java中String Date Timestamp Calendar 之间的关系及转换

本文介绍Java中String、Date、Timestamp、Calendar之间的相互转换方法,并提供实际代码示例,包括日期字符串与日期对象、时间戳之间的转换,以及日期的比较。
java中String Date Timestamp Calendar 之间的关系及转换
2011年11月26日 星期六 11:59

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 1.Calendar 转化 String 

 //获取当前时间的具体情况,如年,月,日,week,date,分,秒等 
        Calendar calendat = Calendar.getInstance();

SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
String dateStr = sdf.format(calendar.getTime());

 


2.String 转化Calendar

String str="2010-5-27";
SimpleDateFormat sdf= new SimpleDateFormat("yyyy-MM-dd");

Date date =sdf.parse(str);

Calendar calendar = Calendar.getInstance();

calendar.setTime(date);

 

3.Date 转化String

SimpleDateFormat sdf= new SimpleDateFormat("yyyy-MM-dd");

String dateStr=sdf.format(new Date());

 

4.String 转化Date
String str="2010-5-27";

SimpleDateFormat sdf= new SimpleDateFormat("yyyy-MM-dd");

Date birthday = sdf.parse(str);

 

5.Date 转化Calendar

Calendar calendar = Calendar.getInstance();
calendar.setTime(new java.util.Date());

 

6.Calendar转化Date

Calendar calendar = Calendar.getInstance();
java.util.Date date =calendar.getTime();

 

7.Date 转成 String

System.out.println(sdf.format(new Date())); 

 

8.String 转成 Timestamp

Timestamp ts = Timestamp.valueOf("2011-1-14 08:11:00");

 

9.Timestamp 转成 String

sdf.format(ts);

 

Timestamp和Date多数用法是一样的。

10.Date 转 TimeStamp

SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

String time = df.format(new Date());

Timestamp ts = Timestamp.valueOf(time);

 

11.日期比较大小

String ti="2010-11-25 20:11:00";
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); 
Date time=sdf.parse(ti);

String ti2="2011-11-26 20:11:00";
Date time2=sdf.parse(ti2);

int c=ti2.compareTo(ti);
if(c>0){
    System.out.println(ti+"大");
}else if(c==0){

    System.out.println("一样大");

}else{
    System.out.println(ti2+"大");
}

 

12.Date/ Timestamp 转成 Calendar 

Calendar calendar = Calendar.getInstance();
calendar.setTime(startDate);

calendar.add(Calendar.YEAR, 2);   //日期加2年
System.out.println(calendar.getTime());
calendar.add(Calendar.DATE, -30);     //日期加30天
System.out.println(calendar.getTime());
calendar.add(Calendar.MONTH, 3);  //日期加3个月
System.out.println(calendar.getTime());

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值