poj 3744 Scout YYF I (概率dp)

题目链接:哆啦A梦传送门

题意:一条路上有n个炸弹,每个炸弹的位置为x,一个人从1开始出发, 每次可以走一步或者走两步,走一步的概率为p,走两步的概率为1-p。问:安全通过这条路的概率是多少?

 

题解:

 

我们将全场分段走,保证每段的末尾至少有一个炸弹,然后求每一段安全通过的概率。每一段都是独立的,也就是最后通过全程的概率为通过每一段概率的乘积。

我们设dp[i]为安全通过i点的概率,故我们有这样的转移方程:

dp[i]=p*dp[i-1]+(1-p)*dp[i-2]。

但是数据量很大,不能直接一遍扫过去。

我们观察这个式子,发现这个可以用矩阵快速幂求解。

\large \begin{bmatrix} dp[n]\\ dp[n-2] \end{bmatrix}=\begin{bmatrix} p &1-p \\ 1 &0 \end{bmatrix}^{n-1}*\begin{bmatrix} dp[1]\\ dp[0] \end{bmatrix}

故每一段都可以用矩阵快速幂求解,每一段的初始点dp[1]=1,并且dp[0]=0。

每一段:

1~x[1]

x[1]+1~x[2]

...

我们要求的是通过每一段的概率,也就是dp[x[i]+1],它等价于求1-dp[x[1]]

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>

using namespace std;

const int N=1010;

struct mat{
    double a[2][2];
};

mat mat_mul(mat x,mat y)
{
    mat res;

    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++){
            res.a[i][j]=0;
            for(int k=0;k<2;k++)
                res.a[i][j]+=x.a[i][k]*y.a[k][j];
        }
    }

    return res;
}

mat mat_pow(mat item,int n)
{
    mat c,res;
    c=item;

    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<2;i++) res.a[i][i]=1;

    while(n)
    {
        if(n&1) res=mat_mul(res,c);
        c=mat_mul(c,c);
        n>>=1;
    }
    return res;

}

int x[20];
int main()
{

    int n;
    double p;

    while(~scanf("%d%lf",&n,&p))
//    while(cin>>n>>p)
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&x[i]);

        sort(x+1,x+1+n);

        double sum=1.0;

        mat item;
        item.a[0][0]=p,item.a[0][1]=1.0-p;
        item.a[1][0]=1,item.a[1][1]=0;

        ///求第一段的概率1-dp[x[1]]
        mat tt=mat_pow(item,x[1]-1);
        sum=sum*(1-tt.a[0][0]);

        for(int i=2;i<=n;i++)
        {
            if(x[i]==x[i-1]) continue;
            tt=mat_pow(item,x[i]-x[i-1]-1);
            sum=sum*(1-tt.a[0][0]);
        }
        printf("%.7f\n",sum); ///poj中G++要%.f,c++%.lf

    }

    return 0;
}


 

 

 

 

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可私 6信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可 6私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 、4下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。、可私 6信博主看论文后选择购买源代码。
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值