寻找最可能的隐藏状态序列 (Finding most probable sequence of hidden states)
对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望能找到生成此序列最可能的隐藏状态序列。
之前的那个问题变转,http://blog.csdn.net/jeiwt/article/details/8076019
假设连续观察3天的海藻湿度为(Dry,Damp,Soggy),求这三天最可能的天气情况。天气只有三类(Sunny,Cloudy,Rainy),而且海藻湿度和天气有一定的关系。
已知:
1. 隐藏的状态:Sunny,Cloudy, Rainy;海藻湿度有四类{Dry,Dryish, Damp,Soggy }
2. 观察状态序列:{Dry, Damp, Soggy };
3. 初始状态序列:Sunny(0.63),Cloudy(0.17),Rainy(0.20);
4. 状态转移矩阵:
| Sunny | Cloudy | Rainy |
Sunny | 0.5 | 0.375 | 0.125 |
Cloudy | 0.25 | 0.125 | 0.625 |
Rainy | 0.25 | 0.375 | 0.375 |
Cloudy(昨天)->Sunny(今天)的概率是0.25;
Sunny(昨天)->Rainy(今天)的概率是0.125.
5. 混淆矩阵(海藻湿度与天气的相关性):
| Dry | Dryish | Damp | Soggy |
Sunny | 0.6 | 0.2 | 0.15 | 0.05 |
Cloudy | 0.25 | 0.25 | 0.25 | 0.25 |
Rainy | 0.05 | 0.10 | 0.35 | 0.50 |
由HMM可知,Day2的天气仅取决于Day1;Day3的天气又只取决于Day2的天气。
Day1由于是初始状态,我们分别求
P(Day1-Sunny)=0.63*0.6;
P(Day1-Cloudy)=0.17*0.25;
P(Day1-Rain)=0.20*0.05;
Choose max{ P(Day1-Sunny) , P(Day1-Cloudy),P(Day1-Rainy)}, 得到P(Day1-Sunny)最大,得出第1天Sunny的概率最大。
Day2的天气又取决于Day1的天气状况,同时也受Day2观察的海藻情况影响。
P(Day2-Sunny)= max{ P(Day1-Sunny)*0.5, P(Day1-Cloudy)*0.25, P(Day1-Rainy)*0.25} *0.15;
P(Day2-Cloudy)= max{ P(Day1-Sunny)*0.375, P(Day1-Cloudy)*0.125, P(Day1-Rainy)*0.625} *0.25;
P(Day2-Rainy)= max{ P(Day1-Sunny)*0.125, P(Day1-Cloudy)*0.625 , P(Day1-Rainy)*0.375} *0.35;
Choosemax{ P(Day2-Sunny) , P(Day2-Cloudy), P(Day2-Rainy)},得到P(Day2-Rainy)最大,得出第2天Rainy的概率最大。
故{Sunny,Rainy}是前两天最大可能的天气序列。
Day3的天气又取决于Day2的天气状况,同时也受Day3观察的海藻情况影响。
P(Day3-Sunny)= max{ P(Day2-Sunny)*0.5, P(Day2-Cloudy)*0.25, P(Day2-Rainy)*0.25} *0.05;
P(Day3-Cloudy)= max{ P(Day2-Sunny)*0.375, P(Day2-Cloudy)*0.125, P(Day2-Rainy)*0.625} *0.25;
P(Day3-Rainy)= max{ P(Day2-Sunny)*0.125, P(Day2-Cloudy)*0.625, P(Day2-Rainy)*0.375} *0. 05;
Choosemax{ P(Day3-Sunny) , P(Day3-Cloudy), P(Day3-Rainy)},得到 P(Day3-Rainy)最大,得出第3天Rainy的概率最大。
故{Sunny,Rainy,Rainy}是这三天最可能的天气序列。