标准化后的图像保存

本文详细介绍了如何在PyTorch中对图像进行标准化处理,并探讨了标准化对图像质量的影响。同时,提供了保存标准化后图像的步骤,帮助读者理解并应用到自己的项目中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import  torch as t
import  cv2
from  torchvision  import transforms as T
import torchvision  as  tv
from   PIL  import   Image
import  numpy as  np

img_reals_path='./test_croped/temp_img/48.3.png'
output_path = './output/epoch_1.png'

def tensor2im(input_image, imtype=np.uint8):
    """"将tensor的数据类型转成numpy类型,并反归一化.

    Parameters:
        input_image (tensor) --  输入的图像tensor数组
        imtype (type)        --  转换后的numpy的数据类型
    """
    mean=[0.3995, 0.4469, 0.4878]
    std=[0.2841, 0.2775, 0.2924]
    # mean = [0.485,0.456,0.406] #自己设置的
    # std = [0.229,0.224,0.225]  #自己设置的
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, t.Tensor):  # get 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星月夜语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值