PTA——编辑距离问题(帮你捋顺思路)

本文详细介绍了解决编辑距离问题的一种动态规划方法。通过构建表格来计算两字符串间的最短编辑距离,即通过最少的字符操作(删除、插入、替换)使一个字符串转化为另一个字符串所需的步骤。文章还提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

有样本P和文本T两个字符串。要用最少的字符操作将文本T转换为样本P。 这里所说的字符操作包括 (1)删除一个字符; (2)插入一个字符; (3)将一个字符改为另一个字符。 将T变换为字P所用的最少字符操作数称为T到 P的最短编辑距离,记为D(T,P)。

输入格式:
第一行是样本P,第二行是文本T。长度都不超过2000个字符。

输出格式:
输出编辑距离D(T,P)

输入样例:
在这里给出一组输入。例如:

apple
cat

输出样例:
在这里给出相应的输出。例如:

5

答案

#include<bits/stdc++.h>
using namespace std;
#define inf 9999
int main()
{
	string s1,s2;
	cin>>s1;
	cin>>s2;
	int len1=s1.length(),len2=s2.length();
	int a[len1+1][len2+1];
	for(int i=0;i<=len1;i++) a[i][0]=i;
	for(int j=0;j<=len2;j++) a[0][j]=j;
	for(int i=1;i<=len1;i++)
	{
		for(int j=1;j<=len2;j++)
		{
			if(s1[i-1]==s2[j-1]) a[i][j]=min(a[i-1][j-1],min(a[i-1][j]+1,a[i][j-1]+1));
			else a[i][j]=min(a[i-1][j-1]+1,min(a[i-1][j]+1,a[i][j-1]+1));
		}
	}
	cout<<a[len1][len2];
}

参考

编辑距离问题(动态规划)

思路

(参考文章中的思路其实已经说得很好了,我再用我自己的理解为大家解释一下)

这道题就是利用动态规划法建表,对于每一个位置计算到达这个位置的最少步数,其中i对应样本P,j对应文本T

有三种方法能够达到(i,j)位置,分别是——从左侧(i,j-1)过来的“插入”方法;从上方(i-1,j)过来的“删除”方法;从左上方(i-1,j-1)过来的“修改字符”方法

接下来对这三种方法详细解释一下:

从左侧(i,j-1)过来的“插入”方法

从(i,j-1)到(i,j)相当于文本T不动,样本P加一,文本T想追上长度加一的样本P,就要插入一个新字符,编辑距离也要随之加1

从上方(i-1,j)过来的“删除”方法

从(i-1,j)到(i,j)相当于文本T长度加一,样本P长度不变,文本T想要匹配必须把自己多出来的字符删除,编辑距离也要随之加1

从左上方(i-1,j-1)过来的“修改字符”方法

从(i-1,j-1)到(i,j)相当于二者长度同时加一,二者多出来的字符相等,编剧距离不变;不相等,需进行修改字符的操作,编辑距离也要随之加1

最后,将上述三种方法得到的数字取最小值,就能得到(i,j)位置的最小值

### PTA实验7-1字符串解压的C语言实现 对于PTA实验7-1中的字符串解压缩问题,在C语言中可以通过遍历输入字符串并解析其中的模式来完成解压缩操作。下面提供一种可能的方: #### 方概述 通过读取字符及其后的数字(如果存在),可以重复该字符指定次数,从而构建最终的结果字符串。 #### C语言代码示例 ```c #include <stdio.h> #include <string.h> #define MAX_LEN 10000 // 定义最大长度 void decompress(const char *compressed, char *decompressed) { int i = 0; // 压缩字符串索引 int j = 0; // 解压后字符串索引 while (compressed[i]) { // 遍历整个压缩字符串 if (isdigit(compressed[i])) { // 如果当前字符是数字,则跳过它 ++i; } else { int repeatCount = 1; if (isdigit(compressed[i + 1])) { // 获取紧跟在字母后面的数字作为重复计数器 repeatCount = compressed[i + 1] - '0'; i += 2; } else { ++i; } for (int k = 0; k < repeatCount && j < MAX_LEN - 1; ++k) { // 将字符按其应出现的次数写入目标数组 decompressed[j++] = compressed[i - 1]; } } if (!isdigit(compressed[i])) break; // 当遇到非数字时停止循环 } decompressed[j] = '\0'; // 添加字符串结束标志 } int main() { const char* inputStr = "a1b3"; // 输入被压缩过的字符串 char outputStr[MAX_LEN]; // 存储解码后的结果 decompress(inputStr, outputStr); printf("%s\n", outputStr); // 输出解码后的字符串 return 0; } ``` 此段代码定义了一个`decompress()`函数用于处理给定格式的压缩字符串,并将其转换成原始形式。注意这里假设了简单的压缩规则——即每个字符后面跟随一个表示重复次数的一位整数;实际应用中可能会有不同的编码方式[^1]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值