图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为G=(V,G)。其中,G表示一个图,V表示图G中顶点的集合,E是图G中顶点之间边的集合。
在图中,顶点个数不能为0,但可以没有边。
若顶点Vi和Vj之间的边没有方向,则称这条边为无向边,表示为(Vi,Vj)。
如果图中任意两个顶点之间的边都是无向边,则称图为无向图。
若从顶点Vi到Vj的边有方向,则称这条边为有向边,表示为<Vi,Vj>。
如果图的任意两个顶点之间的边都是有向边,则称该图为有向图。
简单图
在图中,若不存在顶点到其自身的边,且同一条边不重复出现。
邻接,依附
无向图中,对于任意两个顶点vi和顶点vj,若存在边(vi,vj),则称顶点vi和顶点vj互为邻接点,同时称边(vi,vj)依附于顶点vi和顶点vj。
有向图中,对于任意两个顶点vi和顶点vj,若存在弧<vi,vj>,则称顶点vi邻接到顶点vj,顶点vj邻接自顶点vi,同时称弧<vi,vj>依附于顶点vi和顶点vj 。
无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。
有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图。
顶点的度:在无向图中,顶点v的度是指依附于该顶点的边数,通常记为TD (v)。
顶点的入度:在有向图中,顶点v的入度是指以该顶点为弧头的弧的数目,记为ID (v);
顶点的出度:在有向图中,顶点v的出度是指以该顶点为弧尾的弧的数目,记为OD (v)。
:是指对边赋予的有意义的数值量。
:边上带权的图,也称网图。
路径:在无向图G=(V, E)中,从顶点vp到顶点vq之间的路径是一个顶点序列(vp=vi0,vi1,vi2, …, vim=vq),其中,(vij-1,vij)∈E(1≤j≤m)。若G是有向图,则路径也是有方向的,顶点序列满足<vij-1,vij>∈E。
非带权图——路径上边的个数
带权图——路径上各边的权之和
回路(环):第一个顶点和最后一个顶点相同的路径。
简单路径:序列中顶点不重复出现的路径。
简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。
子图:若图G=(V,E),G’=(V’,E’)*,如果V’ 属于V 且E’ 属于 E ,则称图G’是G的子图。
连通图:在无向图中,如果从一个顶点vi到另一个顶点vj(i≠j)有路径,则称顶点vi和vj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。
连通分量:非连通图的极大连通子图称为连通分量。
强连通图在有向图中,对图中任意一对顶点vi和vj (i≠j),若从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称该有向图是强连通图。
强连通分量:非强连通图的极大强连通子图。
生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个极小连通子图
图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次
如何选取遍历的起始顶点
从编号小的顶点开始。
从某个起点始可能到达不了所有其它顶点
多次调用从某顶点出发遍历图。
图中可能存在回路,某些顶点可能会被重复访问,
附设访问标志数组visited[n]
深度优先搜索
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
广度优先搜索
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访
图的存储结构及实现
用一维数组存储图中顶点的信息。
用一个二维数组(邻接矩阵)存储图中各顶点之间的邻接关系。
假设图G=(V,E)有n个顶点,则邻接矩阵是一个n×n的方阵,定义为:
arc[i] [j]等于1(若(Vi,Vj)属于E或<vi,vj>属于E
arc[i][j]等于0(其他)

网图的邻接矩阵:
arc[i][j]=wij (如果<vi,vj>或者(vi,vj)属于E
arc[i][j]=0(如果i=j)
arc[i][j]=无穷大(其他)

无穷大表示一个计算机允许的,大于所有边上权值的数。
无向图
求顶点的度:邻接矩阵的第i行(或第i列)非零元素的个数。
如何判断邻接矩阵中相应位置的元素arc[i][j] 是否为1。
如何求顶点i的所有邻接点,
将数组中第i行元素扫描一遍,若arc[i][j]为1,则顶点j为顶点i的邻接点。
有向图
如何求顶点i的出度:
邻接矩阵的第i行元素之和。
如何求订单i的入度:
邻接矩阵的第j列元素之和。
邻接矩阵存储无向图的类

const int MaxSize=10; 
template <class T>
class Mgraph{
   public:
      MGraph(T a[ ], int n, int e );   
       ~MGraph( )
       void DFSTraverse(int v); //深度优先遍历
       void BFSTraverse(int v);//广度优先遍历
        ……
   private:
       T vertex[MaxSize]; //顶点数组
       int arc[MaxSize][MaxSize]; //邻接矩阵
       int vertexNum, arcNum; //顶点,边的数目
};

构造函数

template <class T>//无向图的存储
MGraph::MGraph(T a[ ], int n, int e) {
    vertexNum=n; arcNum=e;
    for (i=0; i<vertexNum; i++) 
        vertex[i]=a[i];   //存储顶点元素
    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵
	   for (j=0; j<vertexNum; j++)
           arc[i][j]=0;             
    for (k=0; k<arcNum; k++) {
        cin>>i>>j;     //边依附的两个顶点的序号
        arc[i][j]=1;  arc[j][i]=1;  //置有边标志    
    }
}

深度优先搜素遍历

template <class T>
void MGraph::DFSTraverse(int v){
     cout<<vertex[v]; visited [v]=1;
     for (j=0; j<vertexNum; j++)
         if (arc[v][j]==1 && visited[j]==0)//找V的没有遍历过的邻接点
           DFSTraverse( j );
}

广度优先搜素遍历
用队列来进行广度搜素。

int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){     
    front=rear=-1;   //假设采用顺序队列且不会发生溢出
   int Q[MaxSize]; cout<<vertex[v]; visited[v]=1;  Q[++rear]=v; 
    while (front!=rear)    {
         v=Q[++front];   
         for (j=0; j<vertexNum; j++)
            if (arc[v][j]==1 && visited[j]==0 ) {
                  cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
            }
      }
}

邻接表
邻接表存储的基本思想:
对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表)
所有边表的头指针和存储顶点信息的一维数组构成了顶点表

邻接表的两种结点结构:顶点表结点,边表结点。
vertex:数据域,存放顶点信息。
firstedge:指针域,指向边表中第一个结点。
adjvex:邻接点域,边的终点在顶点表中的下标。
next:指针域,指向边表中的下一个结点

struct ArcNode{
int adjvex;
ArcNode *next;
};
template
struct VertexNode{//顶点表
T vertex;
ArcNode *firstedge;
};
每个结点对应图中的一条边,邻接表的空间复杂度为O(n+e)。
为方便的计算有向图的顶点的入度,可以构造逆邻接表。
在逆邻接表中,边表中存储的是以顶点vi为弧头的弧。
用邻接表存储有向图的类

const int MaxSize=10;    //图的最大顶点数
template <class T>
class ALGraph
{    
   public:
       ALGraph(T a[ ], int n, int e);   
        ~ALGraph;    
       void DFSTraverse(int v);      
       void BFSTraverse(int v); 
       ····
       private:
       VertexNode adjlist[MaxSize];   邻接表
       int vertexNum, arcNum;       顶点和边的数目
};     

构造函数

template <class T>
ALGraph::ALGraph(T a[ ], int n, int e)
{   
    vertexNum=n; arcNum=e; 
    for (i=0; i<vertexNum; i++)   
    {
       adjlist[i].vertex=a[i];
       adjlist[i].firstedge=NULL;      
    } 
    for (k=0; k<arcNum; k++)   
     {
         cin>>i>>j;    
         s=new ArcNode; s->adjvex=j;           
         s->next=adjlist[i].firstedge;    //没有头结点,头插法
         adjlist[i].firstedge=s;
     }
}

深度优先遍历

template <class T>
void ALGraph::DFSTraverse(int v){        
    cout<<adjlist[v].vertex;  visited[v]=1;(做标志)访问标志数组,
    p=adjlist[v].firstedge;    
    while (p!=NULL)     {
        j=p->adjvex;
        if (visited[j]==0) DFSTraverse(j);
    p=p->next;           
    }
}

广度优先遍历

template <class T>
void ALGraph::BFSTraverse(int v){
   front=rear=-1;   
   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;  
   while (front!=rear)  {
       v=Q[++front];    p=adjlist[v].firstedge;    
       while (p!=NULL)  {
            j= p->adjvex;
            if (visited[j]==0) {
                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;
            }
            p=p->next;
       }
    }
}

十字链表
有向图的链式存储结构:
将邻接表与逆邻接表合二为一。
vertex:数据域,存放顶点信息;
firstin:入边表头指针;
firstout:出边表头指针;
tailvex:弧的起点在顶点表中的下标;
headvex:弧的终点在顶点表中的下标;
headlink:入边表指针域;指向终点相同的下一条边
taillink:出边表指针域。直线起集数组点相同的下一条边。
边集数组
利用两个一维数组
一个数组存储顶点信息,
另外一个数组存储边及其权
数组分量包含三个域:边所依附的两个顶点,权值
各边在数组中的次序可以任意。
空间复杂性: O(n+e)
寻找一条边: O(e)
适用性:
对边依次进行处理的操作。(加边法求最小代价生成树

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值