数学基础和组合数学(笔记)

目录

数学基础

一、基本数列模型

等差数列:​

等比数列:​​

二、快速幂

快速幂:

代码如下

三、数论基础

模运算

乘法逆元

四、数学归纳法

第一数学归纳法:

第二数学归纳法:

组合数学

一、排列组合

1.加法原理和乘法原理

2.排列数和组合数

3.容斥原理

二、概率论基础

一般的

条件概率

随机变量


数学基础

一、基本数列模型

等差数列:a_{n}=a_{n-1}+d

通项公式:a_{n}=a_{1}+(n-1)d

求和公式:S_{n}=\frac{(a_{1}+a_{n})n}{2}

等比数列:a_{n}=qa_{n-1}(q\neq 0,q\neq 1)

通项公式:a_{n}=a_{1}q^{n-1}

求和公式:S_{n}=\frac{a_{1}(q^{n}-1)}{q-1}

二、快速幂

计算q^{n}

for (int i=1 ; i<=n ; i++) sum *= q;  //时间复杂度O(N)

快速幂:

首先对n进行二进制分解(设n为45):45=(101101)_{2}=32+8+4+1=2^{5}+2^{3}+2^{2}+2^{0}

因为q^{2k}=q^{k}*q^{k}

所以q^{45}=q^{32}*q^{8}*q^{4}*q^{1}

所以最后只需要计算q^{1},q^{2},q^{4},q^{8},q^{16},q^{32}

时间复杂度为O(log n)

代码如下

int sum = 1;
for (int i=n ; i > 0 ; i /= 2) {
    if(i % 2 == 1) sum *= q;
    q*=q;
}

三、数论基础

模运算

1.假定参与模运算的均为非负整数

2.模运算对于加、减、乘法封闭

(1)封闭性:对某个集合内任意两个元素进行某种运算,运算结果仍在该集合内

(2)对于集合 0 ⋯ 𝑀 − 1 ,该集合对𝑀取模的加、减、乘运算保持封闭

3.模运算同样具有加、减、乘法的交换律、结合律、分配律

乘法逆元

如果ax\equiv 1(mod M),则说明x为a的乘法逆元,用记号a^{-1}表示

当𝑀为质数,且𝑎不为𝑀的倍数时,𝑎的逆元一定存在

其余情况下,𝑎的逆元可能不存在

费马小定理:若𝑀为质数且𝑎不是𝑀的倍数,则有:a^{M-1}\equiv 1(mod M)

所以a的乘法逆元为

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值