组合数学笔记(一)

递推关系与生成函数

标签: 组合数学


斐波那契数列

  • Sn=f0+f1+...+fn=fn+21 S n = f 0 + f 1 + . . . + f n = f n + 2 − 1
  • fn,n3 斐 波 那 契 数 列 f n 是 偶 数 , 当 且 仅 当 n 是 3 的 倍 数
  • 任意斐波那契数列通项是 fn=c1×(1+52)n+c2×(152)n f n = c 1 × ( 1 + 5 2 ) n + c 2 × ( 1 − 5 2 ) n

帕斯卡三角形形从左下到右上对角线上二项式系数和是斐波那契数列( t=n+12 t = n + 1 2 )

  • Fn=(n1\0)+(n2\1)+(n32)+(ntt1) F n = ( n − 1 \0 ) + ( n − 2 \1 ) + ( n − 3 2 ) + ⋯ ( n − t t − 1 )

生成函数

生成函数是无限可微函数的泰勒级数

h0,h1,h2,,hn h 0 , h 1 , h 2 , ⋯ , h n ⋯ 是无穷级数,他的生成函数定义为无穷级数

g(x)=h0+h1x+h2x2++hmxm g ( x ) = h 0 + h 1 x + h 2 x 2 + ⋯ + h m x m

牛顿二项式定理

α,0|x|<|y|xy 设 α 是 实 数 , 对 所 有 满 足 0 ≤ | x | < | y | 的 x 和 y 有

(x+y)α=k=0(αk)xkyαk ( x + y ) α = ∑ k = 0 ∞ ( α k ) x k y α − k

其中 (αk)=α(α1)(αk+1)k! ( α k ) = α ( α − 1 ) ⋯ ( α − k + 1 ) k !
设z=x/y,则 (x+y)α=yα(1+z)α ( x + y ) α = y α ( 1 + z ) α 上述定理等价于

(1+z)α=k=0(αk)zk ( 1 + z ) α = ∑ k = 0 ∞ ( α k ) z k

α=n α = − n 负整数则有

(αk)=(nk)=n(n1)(nk+1)k! ( α k ) = ( − n k ) = − n ( − n − 1 ) ⋯ ( − n − k + 1 ) k !

=(1)kn(n+1)(n+k1)k!=(1)k(n+k1k) = ( − 1 ) k n ( n + 1 ) ⋯ ( n + k − 1 ) k ! = ( − 1 ) k ( n + k − 1 k )

因此对于|z|<1,有
(1+z)n=1(1+z)n=k=0(n+k1k)zk ( 1 + z ) − n = 1 ( 1 + z ) n = ∑ k = 0 ∞ ( n + k − 1 k ) z k

n=1,1(1z)=1+z+z2++zm+ 当 n = 1 , 有 1 ( 1 − z ) = 1 + z + z 2 + ⋯ + z m + ⋯
1(1z)k=(1+z++zm+)(1+z++zm+) 得 1 ( 1 − z ) k = ( 1 + z + ⋯ + z m + ⋯ ) ⋯ ( 1 + z + ⋯ + z m + ⋯ )
hne1+e2++ek=n,eiizi 令 h n 是 e 1 + e 2 + ⋯ + e k = n 的 非 负 整 数 解 的 个 数 , e i 表 示 上 面 第 i 个 取 z i
hn=Ck1n+k1 根 据 实 际 含 义 可 以 知 道 h n = C n + k − 1 k − 1

例子
(1+x+x2+x3+x4+x5)(1+x+x2+x3)(1+x+x2+x3+x4) ( 1 + x + x 2 + x 3 + x 4 + x 5 ) ( 1 + x + x 2 + x 3 ) ( 1 + x + x 2 + x 3 + x 4 )
xe1,xe2,xe3 设 x e 1 , x e 2 , x e 3 是 三 项 的 代 表 项 e1+e2+e3=nxn 那 么 e 1 + e 2 + e 3 = n 解 的 个 数 就 是 最 终 展 开 合 并 x n 的 系 数
同理其他的限制条件都可以写成这种形式

逆序数与排列

b1,b2,,bn 设 b 1 , b 2 , ⋯ , b n 满 足 下 列 整 数 数 列
0b1n1,0b2n2,,0bn11,bn=0 0 ≤ b 1 ≤ n − 1 , 0 ≤ b 2 ≤ n − 2 , ⋯ , 0 ≤ b n − 1 ≤ 1 , b n = 0
{1,2,,n}使{bi} 一 定 存 在 一 个 唯 一 对 于 的 排 列 { 1 , 2 , ⋯ , n } 使 得 逆 序 列 是 { b i }

构造算法(倒着根据 bi b i 放):
n:n n : 写 出 n
: ⋯ : ⋯
i:bi,bi0, i : 考 虑 b i , b i 是 0 , 所 有 比 他 大 的 都 在 右 边
: ⋯ : ⋯
1:b1, 1 : 考 虑 b 1 , ⋯

指数生成函数

g(e)(x)=n=0hnxαn!=h0+h1x+h2x22!++hnxnn!+ g ( e ) ( x ) = ∑ n = 0 ∞ h n x α n ! = h 0 + h 1 x + h 2 x 2 2 ! + ⋯ + h n x n n ! + ⋯

例子
P(n,k)nk,n!(nk)! 取 P ( n , k ) 是 n 元 素 集 合 的 k 排 列 , 数 目 为 n ! ( n − k ) !

g(e)(x)=k=0n!(nk)!n!xk=(1+x)n g ( e ) ( x ) = ∑ k = 0 ∞ n ! ( n − k ) ! n ! x k = ( 1 + x ) n

(1+x)nP 因 此 ( 1 + x ) n 是 数 列 P 的 指 数 生 成 函 数

Catalan数

hn(n+1)线 设 h n 表 示 凸 ( n + 1 ) 边 形 通 过 插 入 不 相 交 对 角 线 分 成 三 角 形 区 域 的 方 法 数

hn=h1hn1++hn1h1=k=1n1hkhnk(n2,h1=1) h n = h 1 h n − 1 + ⋯ + h n − 1 h 1 = ∑ k = 1 n − 1 h k h n − k ( n ≥ 2 , h 1 = 1 )

则有

hn=1nCn12n2 h n = 1 n C 2 n − 2 n − 1

简明证明
g(x)hn,g(x)2g(x)+x=0 g ( x ) 是 h n 的 生 成 函 数 , 则 有 g ( x ) 2 − g ( x ) + x = 0
g(x)=g2(x)=114x2=1212(14x)12 g ( x ) = g 2 ( x ) = 1 − 1 − 4 x 2 = 1 2 − 1 2 ( 1 − 4 x ) 1 2
,g(x)=n=11nCn12n2xn 其 中 再 用 牛 顿 二 项 式 定 理 , 可 得 g ( x ) = ∑ n = 1 ∞ 1 n C 2 n − 2 n − 1 x n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值