DeepLearing学习笔记-Planar data classification with one hidden layer(第三周作业)

0 - 背景:

前文,创建的神经网络只有一个输出层,没有隐藏层。本文将创建单隐藏层的神经网络模型。

  • 二分类单隐藏层的神经网络
  • 神经元节点采用非线性的激活函数,如tanh
  • 计算交叉损失函数
  • 运用前向和后向传播

1- 准备条件:

本文实践过程需要以下的python库:

  • numpy Python中常用的科学计算库
  • sklearn 是常用的数据挖掘和分析库
  • matplotlib 是用于数据可视化
  • testCases 是用以测试相对应函数的测试例子
  • planar_utils 是本文实践中需要用到其他一些函数

模块加载代码:

import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets

%matplotlib inline

np.random.seed(1) # set a seed so that the results are consistent

sklearn 的安装:
pip install sklearn

2-数据集介绍

下述代码将加载一个二分类的数据集并进行可视化:

X, Y = load_planar_dataset()
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

可视化结果:
这里写图片描述
我们可以看出,数据点分布呈现一个花型,其中红色点表示y=0,蓝色点表示y=1。我们的目标是创建一个模型以能够分开这两类数据。
其中X是一个矩阵,包含着数据的特征信息 x1x2
Y是一个向量,包含这数据对应的标记结果,其中 (red:0,blue:1)
尺寸信息:

### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = shape_X[1]  # training set size
### END CODE HERE ###

print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))

运行结果:

The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

3 - 简单逻辑回归

在创建一个全神经网络之前,我们先看看逻辑回归对于这类问题是如何处理的。为此,我们可以采用sklearn的’s built-in函数实现:

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);

运行结果会有如下提示:

c:\users\jason\appdata\local\programs\python\python35\lib\site-packages\sklearn\utils\validation.py:547: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)

上述的警告信息,可以根据提示通过Y = Y.ravel()将Y进行转换,使得尺寸从(1, 400)变为(400,)。

现在绘制出模型的边界:

# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)#会有告警信息
plt.title("Logistic Regression")

# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
       '% ' + "(percentage of correctly labelled datapoints)")

输出:

Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

这里写图片描述
从输出结果,我们可以看出准确率为47%,数据集并不能够通过逻辑回归被很好地被线性划分。由此,我们才需要本文的正题-神经网络。

4 - 神经网络模型

从上述的逻辑回归结果我们可以看出该模型对于花形数据表现不佳,为此我们采用单隐藏层的神经网络作为尝试,模型如下:
这里写图片描述
该模型在输入层和输出层之间,只有一个隐藏层。隐藏层的激活函数是 tanh ,输出层的激活函数是 σ

模型的数学公式:

对于训练样本 x(i) :

z[1](i)=W[1]x(i)+b[1](i)(1)

a[1](i)=tanh(z[1](i))(2)

z[2](i)=W[2]a[1](i)+b[2](i)(3)

y^(i)=a[2](i)=σ(z[2](i))(4)

y(i)prediction={10if a[2](i)>0.5otherwise (5)

根据之前单个样本的代价函数:

log(p(y|x))=log(y^y(1y^)(1y))=ylogy^+(1y)log(1y^)=L(y^y)tag6

上述逻辑回归的损失函数,也被称为 cross-entropy loss,用于度量两个概率分布之间的相似性。

而m个样本的代价函数:

J(w,b)=1mi=1mL(y^y)(7)

在计算完所有样本的预测值之后,我们可以计算整体的代价函数 J

J=1mi=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(8)

注意: 建立神经网络的一般方法如下:
1. 定义神经网络的结构 ( 输入单元数量, 隐藏层单元数量等等).
2. 初始化模型的参数
3. 迭代循环:
- 前向传播
- 计算损失函数
- 后向传播,计算梯度
- 更新参数 (梯度下降)

一般习惯将上述1-3步分别定义成一个独立的函数,再通过模型函数将三者融合一起。在建立模型之后,迭代获取到参数之后,即可对新数据进行预测。

4-1 定义神经网络的结构

定义如下三个参数的值:
- n_x: 输入层的神经元数
- n_h: 隐藏层的神经元数(本文设置为4)
- n_y: 输出层的神经元数

# GRADED FUNCTION: layer_sizes

def layer_sizes(X, Y):
    """
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)

    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    """
    ### START CODE HERE ### (≈ 3 lines of code)
    n_x = X.shape[0] # size of input layer
    n_h = 4
    n_y = Y.shape[0] # size of output layer
    ### END CODE HERE ###
    return (n_x, n_h, n_y)

4-2 模型参数初始化

注意参数尺寸要与上述模型一致。在定义参数的时候,对于权重矩阵我们进行随机初始化:np.random.randn(a,b) * 0.01 以获取一个尺寸为(a,b)的随机矩阵。
对于参数b,我们直接初始化为0,np.zeros((a,b))
初始化代码如下:

# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer

    Returns:
    params -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """

    np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.

    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros((n_y,1))
    ### END CODE HERE ###

    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

4-3 迭代循环

4-3-1 前向传播

为前向传播定义一个函数,在隐藏层的激活函数是tanh,在输出层的激活函数是sigmoid。利用初始化的参数计算 Z[1],A[1],Z[2] A[2] ,同时注意保留值到cache,因为在后续的后向传播需要用到。
前向传播代码:

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
    """
    Argument:
    X -- input data of size (n_x, m)
    parameters -- python dictionary containing your parameters (output of initialization function)

    Returns:
    A2 -- The sigmoid output of the second activation
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###

    # Implement Forward Propagation to calculate A2 (probabilities)
    ### START CODE HERE ### (≈ 4 lines of code)
    Z1 = np.dot(W1,X)+b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2,A1)+b2
    A2 = 1/(1+np.exp(-Z2))
    ### END CODE HERE ###
    #可以在此打印查看变量的尺寸值
    print("Z1 size=",Z1.shape)
    print("A1 size=",A1.shape)
    print("Z2 size=",Z2.shape)
    print("A2 size=",A2.shape)
    assert(A2.shape == (1, X.shape[1]))

    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}

    return A2, cache

测试代码:

def forward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)

    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    return X_assess, parameters


X_assess, parameters = forward_propagation_test_case()
print(X_assess.shape)
A2, cache = forward_propagation(X_assess, parameters)

# Note: we use the mean here just to make sure that your output matches ours. 
print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))

输出结果:

(2, 3)
Z1 size= (4, 3)
A1 size= (4, 3)
Z2 size= (1, 3)
A2 size= (1, 3)
-0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852

注意各个参数的尺寸。

4-3-2 代价函数

在输出的cache中,我们是记录了 A[2] (在代码中用A2表示),该结果包含了 a[2](i) 的所有值,即整个样本。为此,我们可以计算整个样本的代价函数:

J=1mi=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(9)

在python中计算交叉熵损失函数 i=0my(i)log(a[2](i)) 可以用如下的两步骤实现:

logprobs = np.multiply(np.log(A2),Y)    #对应元素相乘
cost = - np.sum(logprobs)                # no need to use a for loop!

代码实现:

# GRADED FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):
    """
    Computes the cross-entropy cost given in equation (13)

    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    parameters -- python dictionary containing your parameters W1, b1, W2 and b2

    Returns:
    cost -- cross-entropy cost given equation (13)
    """

    m = Y.shape[1] # number of example

    # Compute the cross-entropy cost
    ### START CODE HERE ### (≈ 2 lines of code)
    logprobs = np.multiply(np.log(A2),Y)+np.multiply(np.log(1-A2),1-Y)
    cost = -np.sum(logprobs)/m
    ### END CODE HERE ###

    cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                # E.g., turns [[17]] into 17 
    assert(isinstance(cost, float))

    return cost

测试代码:

def compute_cost_test_case():
    np.random.seed(1)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    a2 = (np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]))

    return a2, Y_assess, parameters


A2, Y_assess, parameters = compute_cost_test_case()

print("cost = " + str(compute_cost(A2, Y_assess, parameters)))

运行结果:

cost = 0.692919893776

4-3-3 后向传播

基于前向传播过程中的cache,我们开始计算后向传播。后向传播的公式如下:
这里写图片描述

Jz(i)2=1m(a[2](i)y(i))

JW2=Jz(i)2a[1](i)T

Jb2=iJz(i)2

Jz(i)1=WT2Jz(i)2(1a[1](i)2)

JW1=Jz(i)1XT

Jib1=iJz(i)1

  • 注意 表示元素之间的乘积。
  • 代码中的符号对应以下的信息:

    • dW1 = JW1
    • db1 = Jb1
    • dW2 = JW2
    • db2 = Jb2
    • 建议:

      • 在计算dZ1时候,我们需要先计算 g[1](Z[1]) 。这是由于 g[1](.) is的激活函数是tanh,当 a=g[1](z) g[1](z)=1a2 。为此,我们可以用(1 - np.power(A1, 2))来计算 g[1](Z[1])
    • 代码实现:

      # GRADED FUNCTION: backward_propagation
      
      def backward_propagation(parameters, cache, X, Y):
          """
          Implement the backward propagation using the instructions above.
      
          Arguments:
          parameters -- python dictionary containing our parameters 
          cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
          X -- input data of shape (2, number of examples)
          Y -- "true" labels vector of shape (1, number of examples)
      
          Returns:
          grads -- python dictionary containing your gradients with respect to different parameters
          """
          m = X.shape[1]
      
          # First, retrieve W1 and W2 from the dictionary "parameters".
          ### START CODE HERE ### (≈ 2 lines of code)
          W1 = parameters["W1"]
          W2 = parameters["W2"]
          ### END CODE HERE ###
      
          # Retrieve also A1 and A2 from dictionary "cache".
          ### START CODE HERE ### (≈ 2 lines of code)
          A1 = cache["A1"]
          A2 = cache["A2"]
          ### END CODE HERE ###
      
          # Backward propagation: calculate dW1, db1, dW2, db2. 
          ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
          dZ2 = A2-Y
          dW2 = np.dot(dZ2, A1.T)/m
          db2 = np.sum(dZ2, axis=1, keepdims=True)/m
          dZ1 = np.dot(W2.T,dZ2)*(1-np.power(A1,2))#np.multiply(np.dot(W2.T, dZ2), (1 - np.power(A1, 2)))
          dW1 = np.dot(dZ1, X.T)/m
          db1 = np.sum(dZ1, axis=1, keepdims=True)/m
          ### END CODE HERE ###
      
          grads = {"dW1": dW1,
                   "db1": db1,
                   "dW2": dW2,
                   "db2": db2}
      
          return grads

      测试代码:

      def backward_propagation_test_case():
          np.random.seed(1)
          X_assess = np.random.randn(2, 3)
          Y_assess = np.random.randn(1, 3)
          parameters = {'W1': np.array([[-0.00416758, -0.00056267],
              [-0.02136196,  0.01640271],
              [-0.01793436, -0.00841747],
              [ 0.00502881, -0.01245288]]),
           'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
           'b1': np.array([[ 0.],
              [ 0.],
              [ 0.],
              [ 0.]]),
           'b2': np.array([[ 0.]])}
      
          cache = {'A1': np.array([[-0.00616578,  0.0020626 ,  0.00349619],
               [-0.05225116,  0.02725659, -0.02646251],
               [-0.02009721,  0.0036869 ,  0.02883756],
               [ 0.02152675, -0.01385234,  0.02599885]]),
        'A2': np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]),
        'Z1': np.array([[-0.00616586,  0.0020626 ,  0.0034962 ],
               [-0.05229879,  0.02726335, -0.02646869],
               [-0.02009991,  0.00368692,  0.02884556],
               [ 0.02153007, -0.01385322,  0.02600471]]),
        'Z2': np.array([[ 0.00092281, -0.00056678,  0.00095853]])}
          return parameters, cache, X_assess, Y_assess
      
      
      parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
      
      grads = backward_propagation(parameters, cache, X_assess, Y_assess)
      print ("dW1 = "+ str(grads["dW1"]))
      print ("db1 = "+ str(grads["db1"]))
      print ("dW2 = "+ str(grads["dW2"]))
      print ("db2 = "+ str(grads["db2"]))

      运行结果如下:

      dW1 = [[ 0.01018708 -0.00708701]
       [ 0.00873447 -0.0060768 ]
       [-0.00530847  0.00369379]
       [-0.02206365  0.01535126]]
      db1 = [[-0.00069728]
       [-0.00060606]
       [ 0.000364  ]
       [ 0.00151207]]
      dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]
      db2 = [[ 0.06589489]]

      4-3-4 参数更新

      上述的结果我们已经可以计算出反向传播的梯度了,那么我们就可以通过梯度下降法对参数进行更新:
      θ=θαJθ 其中 α 是学习率 θ 则是代表待更新的参数。
      选择好的学习率,迭代才会收敛,否则迭代过程不断振荡,呈发散状态。
      这里写图片描述

      这里写图片描述

      参数更新代码:

      # GRADED FUNCTION: update_parameters
      
      def update_parameters(parameters, grads, learning_rate = 1.2):
          """
          Updates parameters using the gradient descent update rule given above
      
          Arguments:
          parameters -- python dictionary containing your parameters 
          grads -- python dictionary containing your gradients 
      
          Returns:
          parameters -- python dictionary containing your updated parameters 
          """
          # Retrieve each parameter from the dictionary "parameters"
          ### START CODE HERE ### (≈ 4 lines of code)
          W1 = parameters["W1"]
          b1 = parameters["b1"]
          W2 = parameters["W2"]
          b2 = parameters["b2"]
          ### END CODE HERE ###
      
          # Retrieve each gradient from the dictionary "grads"
          ### START CODE HERE ### (≈ 4 lines of code)
          dW1 = grads["dW1"]
          db1 = grads["db1"]
          dW2 = grads["dW2"]
          db2 = grads["db2"]
          ## END CODE HERE ###
      
          # Update rule for each parameter
          ### START CODE HERE ### (≈ 4 lines of code)
          W1 -= learning_rate * dW1
          b1 -= learning_rate * db1
          W2 -= learning_rate * dW2
          b2 -= learning_rate * db2
          ### END CODE HERE ###
      
          parameters = {"W1": W1,
                        "b1": b1,
                        "W2": W2,
                        "b2": b2}
      
          return parameters

      测试代码:

      def update_parameters_test_case():
          parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
              [-0.02311792,  0.03137121],
              [-0.0169217 , -0.01752545],
              [ 0.00935436, -0.05018221]]),
       'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
       'b1': np.array([[ -8.97523455e-07],
              [  8.15562092e-06],
              [  6.04810633e-07],
              [ -2.54560700e-06]]),
       'b2': np.array([[  9.14954378e-05]])}
      
          grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
              [ 0.00082222, -0.00700776],
              [-0.00031831,  0.0028636 ],
              [-0.00092857,  0.00809933]]),
       'dW2': np.array([[ -1.75740039e-05,   3.70231337e-03,  -1.25683095e-03,
                -2.55715317e-03]]),
       'db1': np.array([[  1.05570087e-07],
              [ -3.81814487e-06],
              [ -1.90155145e-07],
              [  5.46467802e-07]]),
       'db2': np.array([[ -1.08923140e-05]])}
          return parameters, grads
      
      
      
      parameters, grads = update_parameters_test_case()
      parameters = update_parameters(parameters, grads)
      
      print("W1 = " + str(parameters["W1"]))
      print("b1 = " + str(parameters["b1"]))
      print("W2 = " + str(parameters["W2"]))
      print("b2 = " + str(parameters["b2"]))

      测试运行结果:

      W1 = [[-0.00643025  0.01936718]
       [-0.02410458  0.03978052]
       [-0.01653973 -0.02096177]
       [ 0.01046864 -0.05990141]]
      b1 = [[ -1.02420756e-06]
       [  1.27373948e-05]
       [  8.32996807e-07]
       [ -3.20136836e-06]]
      W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
      b2 = [[ 0.00010457]]

      4-4 模型融合

      将上述4-1~4-3的各个模块进行整合成一个完整的神经网络模型。代码如下:

      # GRADED FUNCTION: nn_model
      
      def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
          """
          Arguments:
          X -- dataset of shape (2, number of examples)
          Y -- labels of shape (1, number of examples)
          n_h -- size of the hidden layer
          num_iterations -- Number of iterations in gradient descent loop
          print_cost -- if True, print the cost every 1000 iterations
      
          Returns:
          parameters -- parameters learnt by the model. They can then be used to predict.
          """
      
          np.random.seed(3)
          n_x = layer_sizes(X, Y)[0]
          n_y = layer_sizes(X, Y)[2]
      
          # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
          ### START CODE HERE ### (≈ 5 lines of code)
          parameters = initialize_parameters(n_x, n_h, n_y)
          W1 = parameters["W1"]
          b1 = parameters["b1"]
          W2 = parameters["W2"]
          b2 = parameters["b2"]
          ### END CODE HERE ###
      
          # Loop (gradient descent)
      
          for i in range(0, num_iterations):
      
              ### START CODE HERE ### (≈ 4 lines of code)
              # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
              A2, cache = forward_propagation(X, parameters)
      
              # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
              cost = compute_cost(A2, Y, parameters)
      
              # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
              grads = backward_propagation(parameters, cache, X , Y)
      
              # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
              parameters = update_parameters(parameters, grads)
      
              ### END CODE HERE ###
      
              # Print the cost every 1000 iterations
              if print_cost and i % 1000 == 0:
                  print ("Cost after iteration %i: %f" %(i, cost))
      
          return parameters

      测试代码:

      def nn_model_test_case():
          np.random.seed(1)
          X_assess = np.random.randn(2, 3)
          Y_assess = np.random.randn(1, 3)
          return X_assess, Y_assess
      
      X_assess, Y_assess = nn_model_test_case()
      
      parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
      print("W1 = " + str(parameters["W1"]))
      print("b1 = " + str(parameters["b1"]))
      print("W2 = " + str(parameters["W2"]))
      print("b2 = " + str(parameters["b2"]))

      测试代码运行结果:

      W1 = [[-4.18494502  5.33220306]
       [-7.52989352  1.24306198]
       [-4.19295477  5.32631754]
       [ 7.52983748 -1.24309404]]
      b1 = [[ 2.32926814]
       [ 3.79459053]
       [ 2.3300254 ]
       [-3.79468789]]
      W2 = [[-6033.83672183 -6008.12981297 -6033.10095335  6008.0663689 ]]
      b2 = [[-52.666077]]
      c:\users\jason\appdata\local\programs\python\python35\lib\site-packages\ipykernel_launcher.py:26: RuntimeWarning: overflow encountered in exp

      4-5 预测

      至此,我们已经训练获得了最优的参数,那么我们可以基于该模型对新数据进行预测:

      yprediction=1{activation > 0.5}={10if activation>0.5otherwise

      As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: X_new = (X > threshold)

      代码:

      # GRADED FUNCTION: predict
      
      def predict(parameters, X):
          """
          Using the learned parameters, predicts a class for each example in X
      
          Arguments:
          parameters -- python dictionary containing your parameters 
          X -- input data of size (n_x, m)
      
          Returns
          predictions -- vector of predictions of our model (red: 0 / blue: 1)
          """
      
          # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
          ### START CODE HERE ### (≈ 2 lines of code)
          A2, cache = forward_propagation(X, parameters)
          predictions = (A2 > 0.5)
          #predictions = np.around(A2)#这种方式也可以
          ### END CODE HERE ###
          print ("predictions:", predictions)
          return predictions

      测试代码:

      def predict_test_case():
          np.random.seed(1)
          X_assess = np.random.randn(2, 3)
          parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
              [-0.02311792,  0.03137121],
              [-0.0169217 , -0.01752545],
              [ 0.00935436, -0.05018221]]),
           'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
           'b1': np.array([[ -8.97523455e-07],
              [  8.15562092e-06],
              [  6.04810633e-07],
              [ -2.54560700e-06]]),
           'b2': np.array([[  9.14954378e-05]])}
          return parameters, X_assess
      
      
      parameters, X_assess = predict_test_case()
      
      predictions = predict(parameters, X_assess)
      print("predictions mean = " + str(np.mean(predictions)))

      测试代码运行结果:

      predictions: [[ True False  True]]
      predictions mean = 0.666666666667

      4-5-1 边界绘制

      对于隐藏层为4的神经网络,我们来绘制下边界:

      # Build a model with a n_h-dimensional hidden layer
      parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
      
      # Plot the decision boundary
      plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
      plt.title("Decision Boundary for hidden layer size " + str(4))

      运行结果:

      Cost after iteration 0: 0.693048
      Cost after iteration 1000: 0.288083
      Cost after iteration 2000: 0.254385
      Cost after iteration 3000: 0.233864
      Cost after iteration 4000: 0.226792
      Cost after iteration 5000: 0.222644
      Cost after iteration 6000: 0.219731
      Cost after iteration 7000: 0.217504
      Cost after iteration 8000: 0.219528
      Cost after iteration 9000: 0.218627
      predictions: [[ 1.  1.  1. ...,  0.  0.  0.]]

      waning信息:

      c:\users\jason\appdata\local\programs\python\python35\lib\site-packages\numpy\ma\core.py:6385: MaskedArrayFutureWarning: In the future the default for ma.maximum.reduce will be axis=0, not the current None, to match np.maximum.reduce. Explicitly pass 0 or None to silence this warning.
        return self.reduce(a)
      c:\users\jason\appdata\local\programs\python\python35\lib\site-packages\numpy\ma\core.py:6385: MaskedArrayFutureWarning: In the future the default for ma.minimum.reduce will be axis=0, not the current None, to match np.minimum.reduce. Explicitly pass 0 or None to silence this warning.
        return self.reduce(a)

      输出的边界如下:
      这里写图片描述

      4-5-2 准确率

      统计真实矩阵和预测矩阵中相同位置,值相同的个数。

      # Print accuracy
      predictions = predict(parameters, X)
      print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')

      运行结果:

      Accuracy: 90%

      相比于逻辑回归,此处90%的准确率是高出许多的。

      4-6 隐藏层神经元数量的影响

      我们在隐藏层的神经元数量分别取1, 2, 3, 4, 5, 10, 20做如下观察:

      # This may take about 2 minutes to run
      
      plt.figure(figsize=(16, 32))
      hidden_layer_sizes = [1, 2, 3, 4, 5, 10, 20]
      for i, n_h in enumerate(hidden_layer_sizes):
          plt.subplot(5, 2, i+1)
          plt.title('Hidden Layer of size %d' % n_h)
          parameters = nn_model(X, Y, n_h, num_iterations = 5000)
          plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
          predictions = predict(parameters, X)
          accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
          print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))

      warning信息:

      c:\users\jason\appdata\local\programs\python\python35\lib\site-packages\numpy\ma\core.py:6385: MaskedArrayFutureWarning: In the future the default for ma.maximum.reduce will be axis=0, not the current None, to match np.maximum.reduce. Explicitly pass 0 or None to silence this warning.
        return self.reduce(a)
      c:\users\jason\appdata\local\programs\python\python35\lib\site-packages\numpy\ma\core.py:6385: MaskedArrayFutureWarning: In the future the default for ma.minimum.reduce will be axis=0, not the current None, to match np.minimum.reduce. Explicitly pass 0 or None to silence this warning.
        return self.reduce(a)

      输出结果如下:

      Accuracy for 1 hidden units: 67.5 %
      Accuracy for 2 hidden units: 67.25 %
      Accuracy for 3 hidden units: 90.75 %
      Accuracy for 4 hidden units: 90.5 %
      Accuracy for 5 hidden units: 91.25 %
      Accuracy for 10 hidden units: 90.25 %
      Accuracy for 20 hidden units: 90.5 %

      这里写图片描述
      从上图的对比,我们可以看出,隐藏层的神经元数量越多,则对训练数据集的拟合效果越好,直到最后出现过拟合。本文这里隐藏层的神经元数量,最适值是n_h=5,即能够较好地拟合训练数据集,也不会出现过拟合现象。另外,对于n_h过大而产生的过拟合是可以通过正则化来消除的,这点后续再补充介绍。

planar_test_mex是一个MATLAB函数,主要用于测试一个点云中的平面。以下是该函数的作用: 1. 输入参数: - point_cloud:输入的点云数据。这个参数是一个N×3的矩阵,其中N表示点云中点的数量。每行表示一个点的坐标,分别是x、y和z坐标。 - distance_threshold:用于定义平面的距离阈值。如果点到平面的距离小于该阈值,则将其判定为平面上的点。 2. 输出结果: - plane_points:平面上的点。这个参数是一个M×3的矩阵,其中M表示平面上点的数量。与输入的点云数据相同,每行表示一个点的坐标。 - plane_coefficients:平面的系数。这个参数是一个1×4的向量,其中前三个元素表示平面的法向量,最后一个元素表示平面的距离。 3. 算法过程: - 首先,从输入的点云数据中随机选择三个点,并根据这三个点计算平面的法向量和距离。 - 接下来,将所有的点与计算得到的平面进行距离计算,如果点到平面的距离小于阈值,则将该点判定为平面上的点,并将其添加到结果中。 - 重复上述步骤,直到遍历完所有的点云数据。 - 返回平面上的点和平面的系数作为输出结果。 通过使用planar_test_mex函数,我们可以方便地对一个点云数据进行平面检测,并得到平面上的点和平面的系数。这在计算机视觉、机器人技术等领域中经常用于场景分割、环境建模等任务中。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值