第4门课程-卷积神经网络-第一周作业

背景

介绍卷积层 (CONV)和池化层(POOL) 的前向和后向传播操作。

本文约定如下:

  • 上标 [l] 为该变量所在的层数,即第 lth 层;

    • 例如: a[4] 为第 4th 层的激活函数, W[5] b[5] 则对应的是第5层( 5th )的参数。
  • 上标 (i) 表示第 ith 个样本。

    • 例如: x(i) 表示 第 ith 个训练样本的输入
  • 下标 i 表示向量的第 ith个分量.

    • 例如: a[l]i 表示 l 层激活函数的第 ith分量。假设是一个全连接层fully connected (FC) 。
  • nH , nW and nC 分别表示给定层的高度,宽度和通道数。 例如

    • 例如 n[l]H , n[l]W , n[l]C 表示第 l 层的参数
  • nHprev, nWprev and nCprev 则表示之前层的高,宽和通道数。其等价于 n[l1]H , n[l1]W , n[l1]C

1-大纲

  • 对于卷积层, 包括以下几个步骤:

    • Zero Padding
    • Convolve window
    • Convolution forward
    • Convolution backward (optional)
  • 池化层, 包括以下几个步骤:

    • Pooling forward
    • Create mask
    • Distribute value
    • Pooling backward (optional)

对于上述这些步骤,本文都将基于 numpy进行实现。此后的作业,我们再采用TensorFlow中的函数来构建该网络。
标准的卷积神经网络如下:
这里写图片描述
注意,每个前向传播都有一个对应的后向传播,为此,在计算前向传播过程,需要将中间结果存储在cache中,以便在后向传播中梯度的计算中使用。

2-卷积神经网络

对于三通道(RGB)的体数据,要求filter也是3个通道的深度,然后,在体数据上对应位置相乘,之后求和作为一次体数据的卷积输出。为此,我们需要先构造两个辅助函数如下:

2-1 Zero-Padding

Zero-Padding的使用是为了避免卷积操作之后图像尺寸的锐减,同时也避免了边缘信息的丢失。
这里写图片描述
np.pad函数的使用方法:
第一个参数是待填充数组
第二个参数是填充的形状,按照维度的顺序依次指定padding的尺寸。例如,第1维度中的(2,3)表示前面两个,后面三个。
第三个参数是填充的方法。
比如:

#1维矩阵
arr1D = np.array([1, 1, 2, 2, 3, 4])
'''不同的填充方法'''
print('constant:  ' + str(np.pad(arr1D, (2, 3), 'constant')))

constant: [0 0 1 1 2 2 3 4 0 0 0]

arr3D = np.array([[[1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4], [1, 1, 2, 2, 3, 4]], 
                  [[1, 1, 2, 3, 4, 5], [1, 1, 2, 3, 4, 5], [1, 1, 2, 3, 4, 5]], 
                  [[1, 1, 2, 2, 3, 6], [1, 1, 2, 2, 3, 6], [1, 1, 2, 2, 3, 6]]])
print("init array:\n"+str(arr3D))
print('constant:  \n' + str(np.pad(arr3D, ((0, 0), (1, 1), (2, 2)), 'constant')))#可以尝试将第0位改变下

输出结果:

init array:
[[[1 1 2 2 3 4]
  [1 1 2 2 3 4]
  [1 1 2 2 3 4]]

 [[1 1 2 3 4 5]
  [1 1 2 3 4 5]
  [1 1 2 3 4 5]]

 [[1 1 2 2 3 6]
  [1 1 2 2 3 6]
  [1 1 2 2 3 6]]]
constant:  
[[[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 1 1 2 2 3 4 0 0]
  [0 0 0 0 0 0 0 0 0 0]]

 [[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 3 4 5 0 0]
  [0 0 1 1 2 3 4 5 0 0]
  [0 0 1 1 2 3 4 5 0 0]
  [0 0 0 0 0 0 0 0 0 0]]

 [[0 0 0 0 0 0 0 0 0 0]
  [0 0 1 1 2 2 3 6 0 0]
  [0 0 1 1 2 2 3 6 0 0]
  [0 0 1 1 2 2 3 6 0 0]
  [0 0 0 0 0 0 0 0 0 0]]]

padding定义函数如下:

# GRADED FUNCTION: zero_pad

def zero_pad(X, pad):
    """
    Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image, 
    as illustrated in Figure 1.

    Argument:
    X -- python numpy array of shape (m, n_H, n_W, n_C) representing a batch of m images
    pad -- integer, amount of padding around each image on vertical and horizontal dimensions

    Returns:
    X_pad -- padded image of shape (m, n_H + 2*pad, n_W + 2*pad, n_C)
    """

    ### START CODE HERE ### (≈ 1 line)
    X_pad = np.pad(X, ((0, 0),(pad, pad),(pad, pad),(0, 0)), 'constant', constant_values=0)
    ### END CODE HERE ###

    return X_pad

测试代码:

np.random.seed(1)
x = np.random.randn(4, 3, 3, 2)
x_pad = zero_pad(x, 2)
print ("x.shape =", x.shape)
print ("x_pad.shape =", x_pad.shape)
print("x[1].shape=",x[1].shape)
print("x[1,1].shape=",x[1,1].shape)
print("x[1,1,1].shape=",x[1,1,1].shape)
print("x[1,1,1]=",x[1,1,1])
print ("x[1] =", x[1])
print ("x[1,1] =", x[1,1])
print ("x_pad[1,1] =", x_pad[1,1])

fig, axarr = plt.subplots(1, 2)
axarr[0].set_title('x')
axarr[0].imshow(x[0,:,:,0])
axarr[1].set_title('x_pad')
axarr[1].imshow(x_pad[0,:,:,0])

输出结果:

x.shape = (4, 3, 3, 2)
x_pad.shape = (4, 7, 7, 2)
(3, 3, 2)
(3, 2)
(2,)
x[1,1,1]= [-0.12289023 -0.93576943]
x[1] = [[[ 0.04221375  0.58281521]
  [-1.10061918  1.14472371]
  [ 0.90159072  0.50249434]]

 [[ 0.90085595 -0.68372786]
  [-0.12289023 -0.93576943]
  [-0.26788808  0.53035547]]

 [[-0.69166075 -0.39675353]
  [-0.6871727  -0.84520564]
  [-0.67124613 -0.0126646 ]]]
x[1,1] = [[ 0.90085595 -0.68372786]
 [-0.12289023 -0.93576943]
 [-0.26788808  0.53035547]]
x_pad[1,1] = [[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]

这里写图片描述

2-2 卷积操作

图像卷积操作如下:
这里写图片描述
注:这里我们设置的步长是1的卷积操作。
对输入图像做卷积操作后,输出的图像尺寸会变小(所以才需要上述的padding),但是提取出了图像特征。
定义图像卷积操作函数:

# GRADED FUNCTION: conv_single_step

def conv_single_step(a_slice_prev, W, b):
    """
    Apply one filter defined by parameters W on a single slice (a_slice_prev) of the output activation 
    of the previous layer.

    Arguments:
    a_slice_prev -- slice of input data of shape (f, f, n_C_prev)
    W -- Weight parameters contained in a window - matrix of shape (f, f, n_C_prev)
    b -- Bias parameters contained in a window - matrix of shape (1, 1, 1)

    Returns:
    Z -- a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data
    """

    ### START CODE HERE ### (≈ 2 lines of code)
    # Element-wise product between a_slice and W. Add bias.
    s = np.multiply(a_slice_prev, W) + b
    # Sum over all entries of the volume s
    Z = np.sum(s)
    ### END CODE HERE ###

    return Z

我们取一个子区域和卷积核进行卷积测试。图像中其他的区域类似,只是移动filter,在图像中进行遍历而已。

np.random.seed(1)
a_slice_prev = np.random.randn(4, 4, 3)
W = np.random.randn(4, 4, 3)
b = np.random.randn(1, 1, 1)

Z = conv_single_step(a_slice_prev, W, b)
print("Z =", Z)

输出结果:
Z = -23.1602122025
该结果值即为一次卷积操作的输出结果。

2-3 卷积神经网络的前向传播

由于一个filter的输出结果是一张图像,要是获得多张的stack图像,则需要采用多个filter对输入图像做卷积操作,再将结果stack起来。
当前层输出的长宽与上一层的关系:

nH=nHprevf+2×padstride+1

nW=nWprevf+2×padstride+1

nC=number of filters used in the convolution

卷积层的前向传播:

# GRADED FUNCTION: conv_forward

def conv_forward(A_prev, W, b, hparameters):
    """
    Implements the forward propagation for a convolution function

    Arguments:
    A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
    W -- Weights, numpy array of shape (f, f, n_C_prev, n_C)
    b -- Biases, numpy array of shape (1, 1, 1, n_C)
    hparameters -- python dictionary containing "stride" and "pad"

    Returns:
    Z -- conv output, numpy array of shape (m, n_H, n_W, n_C)
    cache -- cache of values needed for the conv_backward() function
    """

    ### START CODE HERE ###
    # Retrieve dimensions from A_prev's shape (≈1 line)  
    (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape
    #输入图像的尺寸信息

    # Retrieve dimensions from W's shape (≈1 line)
    (f, f, n_C_prev, n_C) = W.shape
    #输入的filter的尺寸信息

    # Retrieve information from "hparameters" (≈2 lines)
    #超参数信息,pad和步径大小
    stride = hparameters['stride']
    pad = hparameters['pad']

    # Compute the dimensions of the CONV output volume using the formula given above. Hint: use int() to floor. (≈2 lines)
    n_H = 1 + int((n_H_prev + 2 * pad - f) / stride)
    n_W = 1 + int((n_W_prev + 2 * pad - f) / stride)
    #输出的图像尺寸信息


    # Initialize the output volume Z with zeros. (≈1 line)
    #为输出的图像初始化
    Z = np.zeros((m, n_H, n_W, n_C))

    # Create A_prev_pad by padding A_prev
    #为输入创建padding
    A_prev_pad = zero_pad(A_prev, pad)
    #遍历样本
    for i in range(m):                               # loop over the batch of training examples
        a_prev_pad = A_prev_pad[i]                               # Select ith training example's padded activation
        for h in range(n_H):                           # loop over vertical axis of the output volume
            for w in range(n_W):                       # loop over horizontal axis of the output volume
                for c in range(n_C):                   # loop over channels (= #filters) of the output volume

                    # Find the corners of the current "slice" (≈4 lines)
                    vert_start = h * stride
                    vert_end = vert_start + f
                    horiz_start = w * stride
                    horiz_end = horiz_start + f

                    # Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line)
                    a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]
                    #取一个样本的一个模板尺寸的数据

                    #样本数据和filter做卷积运算
                    # Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line)
                    #Z[i, h, w, c] = np.sum(np.multiply(a_slice_prev, W[:, :, :, c]) + b[:, :, :, c])#方式1
                    Z[i, h, w, c] = conv_single_step(a_slice_prev, W[:, :, :, c],b[:, :, :, c])#方式2

    ### END CODE HERE ###

    # Making sure your output shape is correct
    assert(Z.shape == (m, n_H, n_W, n_C))

    # Save information in "cache" for the backprop
    cache = (A_prev, W, b, hparameters)

    return Z, cache

测试代码:

np.random.seed(1)
A_prev = np.random.randn(10,4,4,3)
W = np.random.randn(2,2,3,8)
b = np.random.randn(1,1,1,8)
hparameters = {"pad" : 2,
               "stride": 1}

Z, cache_conv = conv_forward(A_prev, W, b, hparameters)
print("Z's mean =", np.mean(Z))
print("cache_conv[0][1][2][3] =", cache_conv[0][1][2][3])

测试代码运行结果:

Z's mean = 0.155859324889
cache_conv[0][1][2][3] = [-0.20075807  0.18656139  0.41005165]

当然,在卷积层中应该会包含一个激活函数,完整如下:

# Convolve the window to get back one output neuron
Z[i, h, w, c] = ...
# Apply activation
A[i, h, w, c] = activation(Z[i, h, w, c])

3- 池化层

池化层会减小输出图像的长和宽(降维),同时也在引入不变性的同时捕获主要的特征。一般有两种池化类型:最大值和平均值。
这里写图片描述
这里写图片描述
注意,池化层是没有参数需要进行训练的。
一般池化层是不使用padding的,输出的图像尺寸:

nH=nHprevfstride+1

nW=nWprevfstride+1

nC=nCprev

3-1 前向池化

代码实现:

# GRADED FUNCTION: pool_forward

def pool_forward(A_prev, hparameters, mode = "max"):
    """
    Implements the forward pass of the pooling layer

    Arguments:
    A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
    hparameters -- python dictionary containing "f" and "stride"
    mode -- the pooling mode you would like to use, defined as a string ("max" or "average")

    Returns:
    A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C)
    cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters 
    """

    # Retrieve dimensions from the input shape
    (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape

    # Retrieve hyperparameters from "hparameters"
    f = hparameters["f"]
    stride = hparameters["stride"]
    #这里没有用padding了,只有filter的尺寸

    # Define the dimensions of the output
    n_H = int(1 + (n_H_prev - f) / stride)
    n_W = int(1 + (n_W_prev - f) / stride)
    n_C = n_C_prev

    # Initialize output matrix A
    A = np.zeros((m, n_H, n_W, n_C))              

    #下面的流程和卷积层很像,只是filter的类型不同
    ### START CODE HERE ###
    for i in range(m):                         # loop over the training examples
        for h in range(n_H):                     # loop on the vertical axis of the output volume
            for w in range(n_W):                 # loop on the horizontal axis of the output volume
                for c in range (n_C):            # loop over the channels of the output volume

                    # Find the corners of the current "slice" (≈4 lines)
                    vert_start = h * stride
                    vert_end = vert_start + f
                    horiz_start = w * stride
                    horiz_end = horiz_start + f

                    # Use the corners to define the current slice on the ith training example of A_prev, channel c. (≈1 line)
                    a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c]

                    # Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np.max/np.mean.
                    if mode == "max":
                        A[i, h, w, c] = np.max(a_prev_slice)
                    elif mode == "average":
                        A[i, h, w, c] = np.mean(a_prev_slice)

    ### END CODE HERE ###

    # Store the input and hparameters in "cache" for pool_backward()
    cache = (A_prev, hparameters)

    # Making sure your output shape is correct
    assert(A.shape == (m, n_H, n_W, n_C))

    return A, cache

测试代码:

np.random.seed(1)
A_prev = np.random.randn(2, 4, 4, 3)
hparameters = {"stride" : 1, "f": 4}

A, cache = pool_forward(A_prev, hparameters)
print("mode = max")
print("A =", A)
print()
A, cache = pool_forward(A_prev, hparameters, mode = "average")
print("mode = average")
print("A =", A)

测试代码的输出结果:

mode = max
A = [[[[ 1.74481176  1.6924546   2.10025514]]]


 [[[ 1.19891788  1.51981682  2.18557541]]]]

mode = average
A = [[[[-0.09498456  0.11180064 -0.14263511]]]


 [[[-0.09525108  0.28325018  0.33035185]]]]

4- 卷积神经网络的后向传播

4.1 卷积层的后向传播

计算dA:

dA+=h=0nHw=0nWWc×dZhw(1)

da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]

计算dW:

dWc+=h=0nHw=0nWaslice×dZhw(2)

dW[:,:,:,c] += a_slice * dZ[i, h, w, c]

计算db:

db=hwdZhw(3)

db[:,:,:,c] += dZ[i, h, w, c]

后向传播代码:

def conv_backward(dZ, cache):
    """
    Implement the backward propagation for a convolution function

    Arguments:
    dZ -- gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n_H, n_W, n_C)
    cache -- cache of values needed for the conv_backward(), output of conv_forward()

    Returns:
    dA_prev -- gradient of the cost with respect to the input of the conv layer (A_prev),
               numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
    dW -- gradient of the cost with respect to the weights of the conv layer (W)
          numpy array of shape (f, f, n_C_prev, n_C)
    db -- gradient of the cost with respect to the biases of the conv layer (b)
          numpy array of shape (1, 1, 1, n_C)
    """

    ### START CODE HERE ###
    # Retrieve information from "cache"
    (A_prev, W, b, hparameters) = cache

    # Retrieve dimensions from A_prev's shape
    (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape

    # Retrieve dimensions from W's shape
    (f, f, n_C_prev, n_C) = W.shape

    # Retrieve information from "hparameters"
    stride = hparameters['stride']
    pad = hparameters['pad']

    # Retrieve dimensions from dZ's shape
    (m, n_H, n_W, n_C) = dZ.shape

    # Initialize dA_prev, dW, db with the correct shapes
    dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev))                           
    dW = np.zeros((f, f, n_C_prev, n_C))
    db = np.zeros((1, 1, 1, n_C))

    # Pad A_prev and dA_prev
    A_prev_pad = zero_pad(A_prev, pad)
    dA_prev_pad = zero_pad(dA_prev, pad)

    for i in range(m):                       # loop over the training examples

        # select ith training example from A_prev_pad and dA_prev_pad
        a_prev_pad = A_prev_pad[i]
        da_prev_pad = dA_prev_pad[i]

        for h in range(n_H):                   # loop over vertical axis of the output volume
            for w in range(n_W):               # loop over horizontal axis of the output volume
                for c in range(n_C):           # loop over the channels of the output volume

                    # Find the corners of the current "slice"
                    vert_start = h * stride
                    vert_end = vert_start + f
                    horiz_start = w * stride
                    horiz_end = horiz_start + f

                    # Use the corners to define the slice from a_prev_pad
                    a_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]

                    # Update gradients for the window and the filter's parameters using the code formulas given above
                    da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]
                    dW[:,:,:,c] += a_slice * dZ[i, h, w, c]#反向传播dW
                    db[:,:,:,c] += dZ[i, h, w, c]#反向传播db

        # Set the ith training example's dA_prev to the unpaded da_prev_pad (Hint: use X[pad:-pad, pad:-pad, :])
        dA_prev[i, :, :, :] = dA_prev_pad[i, pad:-pad, pad:-pad, :]#反向传播dA
    ### END CODE HERE ###

    # Making sure your output shape is correct
    assert(dA_prev.shape == (m, n_H_prev, n_W_prev, n_C_prev))

    return dA_prev, dW, db

测试代码:

np.random.seed(1)
dA, dW, db = conv_backward(Z, cache_conv)
print("dA_mean =", np.mean(dA))
print("dW_mean =", np.mean(dW))
print("db_mean =", np.mean(db))

测试代码运行结果:

dA_mean = 9.60899067587
dW_mean = 10.5817412755
db_mean = 76.3710691956

4.2 池化层-后向传播

4.2.1 Max pooling - backward pass

在介绍池化层的后向传播之前,先介绍一个定义的函数create_mask_from_window()用以提取最大值的位置。

X=[1432]M=[0100](4)

def create_mask_from_window(x):
    """
    Creates a mask from an input matrix x, to identify the max entry of x.

    Arguments:
    x -- Array of shape (f, f)

    Returns:
    mask -- Array of the same shape as window, contains a True at the position corresponding to the max entry of x.
    """

    ### START CODE HERE ### (≈1 line)
    mask = (x == np.max(x))
    ### END CODE HERE ###

    return mask

测试代码:

np.random.seed(1)
x = np.random.randn(2,3)
mask = create_mask_from_window(x)
print('x = ', x)
print("mask = ", mask)

输出结果:

x =  [[ 1.62434536 -0.61175641 -0.52817175]
 [-1.07296862  0.86540763 -2.3015387 ]]
mask =  [[ True False False]
 [False False False]]

之所以要记录最大值得位置,是由于在前向传播过程只有最大值点对cost有贡献。反向传播是计算代价对应的梯度,对于有贡献的部分其梯度值是非0。
这里写图片描述

4.2.2 Average pooling - backward pass

同理对于均值池化的反向传播,我们可以构造一个类似的mask:

dZ=1dZ=[1/41/41/41/4](5)

对于一个2*2的filter。我们需要把值平均分成2*2=4份,传递到前边小区域的4个单元,实现区域的分散扩大化:
这里写图片描述

def distribute_value(dz, shape):
    """
    Distributes the input value in the matrix of dimension shape

    Arguments:
    dz -- input scalar
    shape -- the shape (n_H, n_W) of the output matrix for which we want to distribute the value of dz

    Returns:
    a -- Array of size (n_H, n_W) for which we distributed the value of dz
    """

    ### START CODE HERE ###
    # Retrieve dimensions from shape (≈1 line)
    (n_H, n_W) = shape

    # Compute the value to distribute on the matrix (≈1 line)
    average = dz / (n_H * n_W)

    # Create a matrix where every entry is the "average" value (≈1 line)
    a = np.ones(shape) * average
    ### END CODE HERE ###

    return a

测试代码:

a = distribute_value(2, (2,2))
print('distributed value =', a)

测试代码输出:

distributed value = [[ 0.5  0.5]
 [ 0.5  0.5]]

可以看出,将原来的1*1的矩阵(值=2),反向传播为2*2的矩阵,且每个值都是0.5。这就是反向传播过程中对每个点的处理方式。

4.2.3 池化层的后向传播汇总

池化层后向传播代码:

def pool_backward(dA, cache, mode = "max"):
    """
    Implements the backward pass of the pooling layer

    Arguments:
    dA -- gradient of cost with respect to the output of the pooling layer, same shape as A
    cache -- cache output from the forward pass of the pooling layer, contains the layer's input and hparameters 
    mode -- the pooling mode you would like to use, defined as a string ("max" or "average")

    Returns:
    dA_prev -- gradient of cost with respect to the input of the pooling layer, same shape as A_prev
    """

    ### START CODE HERE ###

    # Retrieve information from cache (≈1 line)
    (A_prev, hparameters) = cache

    # Retrieve hyperparameters from "hparameters" (≈2 lines)
    stride = hparameters['stride']
    f = hparameters['f']

    # Retrieve dimensions from A_prev's shape and dA's shape (≈2 lines)
    m, n_H_prev, n_W_prev, n_C_prev = A_prev.shape
    m, n_H, n_W, n_C = dA.shape

    # Initialize dA_prev with zeros (≈1 line)
    dA_prev = np.zeros_like(A_prev)
    #依据给定数组(A_prev)的形状和类型返回一个新的元素全部为0的数组
    #等同于A_prev.copy().fill(0)。

    for i in range(m):                       # loop over the training examples

        # select training example from A_prev (≈1 line)
        a_prev = A_prev[i]

        for h in range(n_H):                   # loop on the vertical axis
            for w in range(n_W):               # loop on the horizontal axis
                for c in range(n_C):           # loop over the channels (depth)

                    # Find the corners of the current "slice" (≈4 lines)
                    vert_start = h * stride
                    vert_end = vert_start + f
                    horiz_start = w * stride
                    horiz_end = horiz_start + f

                    # Compute the backward propagation in both modes.
                    if mode == "max":

                        # Use the corners and "c" to define the current slice from a_prev (≈1 line)
                        a_prev_slice = a_prev[vert_start:vert_end, horiz_start:horiz_end, c]
                        # Create the mask from a_prev_slice (≈1 line)
                        mask = create_mask_from_window(a_prev_slice)
                        # Set dA_prev to be dA_prev + (the mask multiplied by the correct entry of dA) (≈1 line)
                        dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += mask * dA[i, vert_start, horiz_start, c]
                        #注意这里的计算

                    elif mode == "average":

                        # Get the value a from dA (≈1 line)
                        da = dA[i, vert_start, horiz_start, c]
                        # Define the shape of the filter as fxf (≈1 line)
                        shape = (f, f)
                        # Distribute it to get the correct slice of dA_prev. i.e. Add the distributed value of da. (≈1 line)
                        dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c] += distribute_value(da, shape)
                        #注意这里的计算

    ### END CODE ###

    # Making sure your output shape is correct
    assert(dA_prev.shape == A_prev.shape)

    return dA_prev

测试代码:

np.random.seed(1)
A_prev = np.random.randn(5, 5, 3, 2)
hparameters = {"stride" : 1, "f": 2}
A, cache = pool_forward(A_prev, hparameters)
dA = np.random.randn(5, 4, 2, 2)

dA_prev = pool_backward(dA, cache, mode = "max")
print("mode = max")
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])  
print()
dA_prev = pool_backward(dA, cache, mode = "average")
print("mode = average")
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1]) 

测试代码运行结果:

mode = max
mean of dA =  0.145713902729
dA_prev[1,1] =  [[ 0.          0.        ]
 [ 5.05844394 -1.68282702]
 [ 0.          0.        ]]

mode = average
mean of dA =  0.145713902729
dA_prev[1,1] =  [[ 0.08485462  0.2787552 ]
 [ 1.26461098 -0.25749373]
 [ 1.17975636 -0.53624893]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值