poj 2154 Color polya 定理的优化

这题如果变量全用long long 会超时。。。。

已知珠子的颜色和个数都为n,只考虑旋转,不考虑翻转,问能形成多少种项链。

因为n很大,不能直接枚举i,计算 gcd(n,i)

但是可以换一个思路 gcd(n,i)=w ,w为循环节的个数,那么n/w则为单个循环节的长度 l(每个循环节的长度都相等,因为项链旋转后,原来相邻的珠子现在还相邻,所以在计算循环时,每个循环的长度相等) 那么gcd(n/w,i/w)=w/w=1,所以要计算有多少个i使gcd(n,i)=w,就可以通过计算 有多少个gcd(n/w,i/w)=gcd(l,i/w)=1来得到,也就是有多少个比l小且和l互素数,也就是euler(l)

枚举w,只需到w*w<=n即可,因为如果存在长度w,那么也就存在长度n\w(w,和n\w为n的因子),计算时euler(i)*poww(n,n/i-1) -1是因为最后除|g| |g|==n,


#include<iostream>
using namespace std;
int mod;
int eulr(int n)
{
    int ans=n;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            ans=ans/i*(i-1);
            while(n%i==0) n/=i;
        }
    }
    if(n!=1) ans=ans/n*(n-1);
    return ans;
}
int poww(int a,int b)
{
    int ans=1;
    a=a%mod;
    for(;b;a=a*a%mod,b=b>>1)
    {
        if(b&1)
            ans=ans*a%mod;
    }
    return ans;
}
int main()
{
    std::ios::sync_with_stdio(false);
    int x,n;
    cin>>x;
    while(x--)
    {
        cin>>n>>mod;
        long long ans=0;
        for(int i=1;i*i<=n;i++)
        {
            if(n%i==0)
            {
                if(i*i==n) ans+=eulr(i)%mod*poww(n,i-1)%mod;
                else
                {
                    ans+=eulr(i)%mod*poww(n,n/i-1)%mod+eulr(n/i)%mod*poww(n,i-1)%mod;
                }
                ans=ans%mod;
            }
        }
        cout<<ans<<endl;

    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值