Fibonacci 前N项平方和 矩阵快速幂

本文介绍了一种使用矩阵快速幂的方法来高效计算斐波那契数列的前n项平方和。通过将斐波那契数列的递推公式转化为矩阵形式,实现了对大数的有效处理,并提供了完整的AC代码实现。

由普通快速幂同理 需要一个 单位变量S=1

但是矩阵快速幂是矩阵相乘所以需要构造一个单位矩阵

由于本人没有学习过线性代数对矩阵方面不是很敏感 所以摸索Fn项是矩阵的哪一个位置很久

这题其他知识相信大家在网上都找的到

但这题真正考得是如何把 Fn的前n项平方和转化


由图可知前N项平方和可以转化成 Fn*(Fn+Fn-1)

AC代码如下

#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
#include <queue>
#include<cstdlib>
#define ll long long
#define MOD 1000000007
using namespace std;
struct nobe
{
    ll a[2][2];
};
ll n;
ll sum;
nobe mut(nobe x,nobe y)
{
    nobe res;
    memset(res.a,0,sizeof(res.a));
    for(ll i=0;i<2;i++)
        for(ll j=0;j<2;j++)
        for(ll k=0;k<2;k++)
            res.a[i][j]=(res.a[i][j]+x.a[i][k]*y.a[k][j])%MOD;
        return res;
}
void quick(ll n)
{
    nobe c,res;
    c.a[0][0]=1;
    c.a[0][1]=1;
    c.a[1][0]=1;
    c.a[1][1]=0;
    memset(res.a,0,sizeof(res.a));
    for(ll i=0;i<2;i++)
        res.a[i][i]=1;
    while(n)
    {
        if(n&1)
        res=mut(res,c);
        c=mut(c,c);
        n=n>>1;
    }
       printf("%lld\n",((res.a[0][1]%MOD)*(res.a[0][1]%MOD+res.a[1][1]%MOD))%MOD);

}
int main()
{
    ll i,t;
    while(scanf("%lld",&n)!=EOF)
    {
           quick(n);
    }


    return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值