pandas,将DataFrame的列逆序排列

本文介绍了如何在Pandas DataFrame中使用factorize和sort参数进行列的逆序排列,详细解析了key函数的执行结果及其在排序过程中的作用。
摘要由CSDN通过智能技术生成
import pandas as pd
import numpy as np

df=pd.read_excel("https://www.gairuo.com/file/data/dataset/team.xlsx")
# df.sample(5)  # 随机读取5个数据
df.sort_index(na_position="first")

# 通过因子化 factorize,将列进行逆序排列
# key:在排序前,对 index 执行的函数 
df.sort_index
### 回答1: 可以使用pandas的loc或iloc方法来读取dataframe的某些。例如,假设我们有一个名为df的dataframe,其中包含三'A'、'B'和'C',我们想要读取'A'和'C',可以使用以下代码: ``` df.loc[:, ['A', 'C']] ``` 或者 ``` df.iloc[:, [, 2]] ``` 其中,loc方法使用名来选择,iloc方法使用的索引来选择。在这两种方法中,':'表示选择所有行。 ### 回答2: 使用pandas读取dataframe的某些可以通过以下步骤实现。 首先,我们需要导入pandas库,并使用`read_csv()`方法读取一个csv文件,并将其存储为一个dataframe对象。例如,我们将文件路径指定为`file_path`,可以使用以下代码读取csv文件: ```python import pandas as pd # 读取csv文件并存储为dataframe对象 df = pd.read_csv(file_path) ``` 接下来,如果我们只想保留某些,可以使用`[]`操作符来选择这些。例如,假设我们只想保留dataframe中的"name"和"age",可以使用以下代码: ```python # 选择指定的,并将其存储为一个新的dataframe对象 selected_columns = ['name', 'age'] new_df = df[selected_columns] ``` 这样,新的dataframe对象`new_df`将仅包含"dataframe"中的"name"和"age"。 另外,如果我们只对某些特定行感兴趣,可以使用`loc`或`iloc`方法。例如,假设我们只想选择前10行的"name"和"age",可以使用以下代码: ```python # 使用loc方法选择指定的行和,并将其存储为一个新的dataframe对象 selected_rows = df.loc[:9, selected_columns] ``` 这样,新的dataframe对象`selected_rows`将只包含"dataframe"中前10行的"name"和"age"。 总而言之,使用pandas读取dataframe的某些可以通过选择指定的和行来实现。 ### 回答3: 在pandas中,可以使用下方法读取dataframe中的某些。 使用单个名 可以使用单个名来读取单。例如,如果我们有一个名为df的dataframe,其中包含名为column1和column2的两,我们可以使用以下代码来读取其中的一: ```python column1_data = df['column1'] ``` 使用多个名 如果我们想要读取多个,可以将名放在一个表中。例如,如果我们想要读取column1和column2这两,我们可以使用以下代码: ```python columns_data = df[['column1', 'column2']] ``` 此时,返回的是一个新的dataframe,其中只包含指定的。 使用索引 除了使用名,我们也可以使用的索引来读取dataframe中的索引从0开始。例如,如果我们想要读取第一,可以使用以下代码: ```python column_data = df[df.columns[0]] ``` 此时,返回的是一个包含指定的Series。 注意:如果我们使用单个名来读取数据,返回的是一个Series对象;如果我们使用多个名来读取数据,返回的是一个dataframe对象。 这是使用pandas读取dataframe某些的方法。根据实际需求选择适合的方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值