At the school where Vasya is studying, preparations are underway for the graduation ceremony. One of the planned performances is a ball, which will be attended by pairs of boys and girls.
Each class must present two couples to the ball. In Vasya’s class, a boys and b girls wish to participate. But not all boys and not all girls are ready to dance in pairs.
Formally, you know k possible one-boy-one-girl pairs. You need to choose two of these pairs so that no person is in more than one pair.
For example, if a=3, b=4, k=4 and the couples (1,2), (1,3), (2,2), (3,4) are ready to dance together (in each pair, the boy’s number comes first, then the girl’s number), then the following combinations of two pairs are possible (not all possible options are listed below):
(1,3) and (2,2);
(3,4) and (1,3);
But the following combinations are not possible:
(1,3) and (1,2) — the first boy enters two pairs;
(1,2) and (2,2) — the second girl enters two pairs;
Find the number of ways to select two pairs that match the condition above. Two ways are considered different if they consist of different pairs.
Input
The first line contains one integer t (1≤t≤104) — the number of test cases. Then t test cases follow.
The first line of each test case contains three integers a, b and k (1≤a,b,k≤2⋅105) — the number of boys and girls in the class and the number of couples ready to dance together.
The second line of each test case contains k integers a1,a2,…ak. (1≤ai≤a), where ai is the number of the boy in the pair with the number i.
The third line of each test case contains k integers b1,b2,…bk. (1≤bi≤b), where bi is the number of the girl in the pair with the number i.
It is guaranteed that the sums of a, b, and k over all test cases do not exceed 2⋅105.
It is guaranteed that each pair is specified at most once in one test case.
Output
For each test case, on a separate line print one integer — the number of ways to choose two pairs that match the condition above.
Example
inputCopy
3
3 4 4
1 1 2 3
2 3 2 4
1 1 1
1
1
2 2 4
1 1 2 2
1 2 1 2
outputCopy
4
0
2
Note
In the first test case, the following combinations of pairs fit:
(1,2) and (3,4);
(1,3) and (2,2);
(1,3) and (3,4);
(2,2) and (3,4).
There is only one pair in the second test case.
In the third test case, the following combinations of pairs fit:
(1,1) and (2,2);
(1,2) and (2,1).
题意
a个男生,b个女生,k对一起跳舞的男女,需要选出2对一起跳舞的出来,这两对不能出现相同的男生或女生
思路
首先想到的自然是暴力,遍历第一对男女,然后再遍历一次符合题目要求的第二对男女,这样的时间复杂度是O(n²),显然1010的时间复杂度会T的。
于是乎,我们可以用二分图的思维考虑这道题,男生为这个图的一个顶点集,女生为另一个,如样例1
当我们第一队男女选择为B1,G2,与B1顶点,G2顶点相连的其他边就不能选择了,这时能派出的队伍为
由此可以推出
对于每一选定的第一对男女,第二队男女的可选数量=总对数-(已选男生边数-1)-(已选女生边数-1)-1
坑
注意数据范围,(105)2会爆int
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
const int inf=0x3f3f3f3f;
#define ll long long
#define ull unsigned long long
#define mm(w,v) memset(w,v,sizeof(w))
#define f(x,y,z) for(int x=(y),_=(z);x<_;++x)
const int modn=1e9+7;
const int MAXN=200000+10;
using namespace std;
struct node {
int b,g;
};
node dance[MAXN];
int bcnt[MAXN];
int gcnt[MAXN];
void solve() {
int t;
scanf("%d",&t);
while(t--) {
int a,b,k;
scanf("%d%d%d",&a,&b,&k);
f(i,0,a+1) {
bcnt[i]=0;
}
f(i,0,b+1) {
gcnt[i]=0;
}
f(i,0,k) {
scanf("%d",&dance[i].b);
bcnt[dance[i].b]++;
}
f(i,0,k) {
scanf("%d",&dance[i].g);
gcnt[dance[i].g]++;
}
ll ans=0;
f(i,0,k) {
ans+=(k-(bcnt[dance[i].b]-1)-(gcnt[dance[i].g]-1)-1);
}
printf("%lld\n",ans/2);
}
}
int main(void) {
solve();
}