力扣300. 最长递增子序列

题目描述:

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例1:

输入:[10,9,2,5,3,7,101,18]
输出:4
解释:最长的上升子序列是 [2,3,7,101],它的长度是 4。

示例2:

输入:[0,1,0,3,2,3]
输出:4
解释:最长的上升子序列是 [0,1,2,3],它的长度是 4。

Java代码实现一:动态规划

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        if (n == 0) {
            return 0;
        }
        int[] dp = new int[n];
        Arrays.fill(dp, 1);
        int max = 1;
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            max = Math.max(max, dp[i]);
        }
        return max;
    }
}

解决思路:

动态规划解决此题,定义dp[i]为以第i个数字结尾的最长递增子序列长度。

时间复杂度:

O(n^2)

Java代码实现二:贪心 + 二分查找

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        int len = 0;
        for (int num : nums) {
            int i = Arrays.binarySearch(dp, 0, len, num);
            if (i < 0) {
                i = -(i + 1);
            }
            dp[i] = num;
            if (i == len) {
                len++;
            }
        }
        return len;
    }
}

解决思路:

用一个数组dp记录最长递增子序列,其中dp[i]表示长度为i+1的递增子序列的最后一个数字。

时间复杂度:

O(nlogn)

Java代码实现三:树状数组

class Solution {
    public int lengthOfLIS(int[] nums) {
        if (nums.length == 0) {
            return 0;
        }

        int n = nums.length;
        int[] list = new int[n];

        for (int i = 0; i < n; i++) {
            list[i] = nums[i];
        }
        Arrays.sort(list);
        for (int i = 0; i < n; i++) {
            nums[i] = Arrays.binarySearch(list, nums[i]) + 1;
        }

        int[] c = new int[n + 1];

        int max = 0;
        for (int i = 0; i < n; i++) {
            int res = query(c, nums[i] - 1);
            max = Math.max(max, res + 1);
            update(c, nums[i], res + 1);
        }

        return max;
    }

    public int lowbit(int x) {
        return x & (-x);
    }

    public void update(int[] c, int pos, int val) {
        while (pos < c.length) {
            c[pos] = Math.max(c[pos], val);
            pos += lowbit(pos);
        }
    }

    public int query(int[] c, int pos) {
        int res = 0;
        while (pos > 0) {
            res = Math.max(res, c[pos]);
            pos -= lowbit(pos);
        }
        return res;
    }
}

解决思路:

用树状数组,通过二进制最后一个1的位置,可以实现寻找子序列中小于等于某个数字的值的个数。

时间复杂度:

O(nlogn)

参考链接:

题解:最长递增子序列(动态规划、贪心 + 二分查找、树状数组)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值