最长递增子序列(力扣)图解

最长递增子序列(力扣)

原题

题目链接

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

1 <= nums.length <= 2500
-104 <= nums[i] <= 104

解题思路

代码

代码的注释即为思路。(易于理解)。

class Solution {
    public int lengthOfLIS(int[] nums) {
		//如果数组为0个元素则最长递增子序列的个数为0
        if(nums.length==0){
            return 0;
        }else{//当数组的个数不为0
            int[] dp=new int[nums.length];
            //初始化
            for(int i=0;i<nums.length;i++){
            //dp[i]表示以nums[i]结尾的最长递增子序列的个数
                dp[i]=1;
            }
            
            //开始遍历
            //外层循环表示从以nums[i]为最长递增子序列的最后一个元素
            //内层循环从第一个至nums[i]元素(使用下标j进行遍历)
            //在nums[j]<nums[i]情况下(说明以nums[j]结尾的最长增序子序列的最后一个元素小于以nums[i]结尾的最长增序子序列的最后一个元素)
            //所以要看一下是以nums[j]为倒数第二个的序列数长还是不要nums[j]加入的序列长
            for(int i=0;i<nums.length;i++){
                for(int j=0;j<=i;j++){
                    if(nums[j]<nums[i]){
                    dp[i]=Math.max(dp[i],dp[j]+1);
                    }
                }
            }

            //找出dp[i]中的最大元素
            int max=0;
            for(int i:dp){
                max=Math.max(max,i);
            }
            return max;
        }

    }
}

图解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

LeetCode力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列递增子序列数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长子序列长度 } } return max_len; // 返回最长连续递增子序列长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长子序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

齊 天 大 聖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值