力扣 1960. 两个回文子字符串长度的最大乘积

文章讲述了如何在给定字符串中找到两个不相交的奇数长度回文子串,使得它们的长度乘积最大。主要方法是使用马拉车算法找出每个位置为中心的最长回文串长度,然后计算前缀和后缀和,通过特殊处理确保所有可能的回文子串都被考虑。最后更新答案并返回最大乘积。
摘要由CSDN通过智能技术生成

题意

给定一个字符串,找两个不相交的长度都为奇数的回文子串,使他们长度乘积最大

思路

直接说结论,遍历字符串的每个位置,求出这个位置左边包括的最长回文子串的长度最大值,和右边包括的最长回文子串的长度的最大值,然后更新答案。
问题在于怎么提前处理出每个位置前和后的回文串最大长度。

  • 注意到字符串长度是1e5,那么首先这里要求出每个位置为中心的最长回文长度就要用马拉车(已经不会写了,直接套模板)。
  • 根据每个位置为中心的最长回文长度,可以标记出这些回文串最长延申到的位置。也即求出每个位置为结尾和开头的最长回文串长度。
  • 由于我们需要的是每个位置之前或之后包含的最长回文串长度,所以要用前缀和和后缀和再更新一遍
  • 然而到目前为止还是有问题的。 可以看abcba这个例子,这个字符串本身就是个回文串,按前面的做法,前缀包含最长的长度序列是1 1 1 1 5,后缀包含最长的是 5 1 1 1 1,最后答案算出来是5了,这显然不对,因为abcba这个回文串虽然最大长度是5,但其也必然包含了长度为4、3、2、1的回文串,也要将这些回文串更新到相应的端点上,而不能只更新最大值。
  • 更新的方法也非常巧妙,比如说前缀序列,我们在得到1 1 1 1 5后,我们只需要反向遍历,更新pre[i] = max(pre[i],pre[i+1]-2),即可,因为pre[i+1]-2就相当于考虑到回文串去掉两端还是回文串的问题。
  • 最后每个位置前缀和后缀序列的数相乘更新答案即可。
class Solution {
public:
    using ll = long long;
    long long maxProduct(string s) {
        int n = s.size();
        vector<int> span(n);

        // manacher
        for (int i = 0, l = 0, r = -1; i < n; ++i) {
            span[i] = (i <= r ? min(span[l + r - i], r - i + 1) : 1);
            while (i - span[i] >= 0 && i + span[i] < n && s[i - span[i]] == s[i + span[i]]) {
                ++span[i];
            }
            if (i + span[i] - 1 > r) {
                l = i - span[i] + 1;
                r = i + span[i] - 1;
            }
        }
       
        vector<int>pre(n);
        for(int i=0;i<n;i++) {
            pre[i+span[i]-1] = max(pre[i+span[i]-1],span[i]*2-1);
        }
        for(int i=1;i<n;i++) {
            pre[i]=max(pre[i],pre[i-1]);
        }
        for(int i=n-2;i>=0;i--) {
            pre[i] = max(pre[i],pre[i+1]-2);
        }
        vector<int>suf(n);
        long long ans = 0;
        for(int i=n-1;i>=0;i--) {
            suf[i-span[i]+1] = max(suf[i-span[i]+1],span[i]*2-1);
        }
        for(int i=n-2;i>=0;i--) {
            suf[i]=max(suf[i],suf[i+1]);
        }
        for(int i=1;i<n;i++) {
            suf[i] = max(suf[i],suf[i-1]-2);
        }
        for(int i=n-1;i>=1;i--) {
            ans=max(ans,1ll*suf[i]*pre[i-1]);
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值