题意
给定一个字符串,找两个不相交的长度都为奇数的回文子串,使他们长度乘积最大
思路
直接说结论,遍历字符串的每个位置,求出这个位置左边包括的最长回文子串的长度最大值,和右边包括的最长回文子串的长度的最大值,然后更新答案。
问题在于怎么提前处理出每个位置前和后的回文串最大长度。
- 注意到字符串长度是1e5,那么首先这里要求出每个位置为中心的最长回文长度就要用马拉车(已经不会写了,直接套模板)。
- 根据每个位置为中心的最长回文长度,可以标记出这些回文串最长延申到的位置。也即求出每个位置为结尾和开头的最长回文串长度。
- 由于我们需要的是每个位置之前或之后包含的最长回文串长度,所以要用前缀和和后缀和再更新一遍
- 然而到目前为止还是有问题的。 可以看abcba这个例子,这个字符串本身就是个回文串,按前面的做法,前缀包含最长的长度序列是1 1 1 1 5,后缀包含最长的是 5 1 1 1 1,最后答案算出来是5了,这显然不对,因为abcba这个回文串虽然最大长度是5,但其也必然包含了长度为4、3、2、1的回文串,也要将这些回文串更新到相应的端点上,而不能只更新最大值。
- 更新的方法也非常巧妙,比如说前缀序列,我们在得到1 1 1 1 5后,我们只需要反向遍历,更新pre[i] = max(pre[i],pre[i+1]-2),即可,因为pre[i+1]-2就相当于考虑到回文串去掉两端还是回文串的问题。
- 最后每个位置前缀和后缀序列的数相乘更新答案即可。
class Solution {
public:
using ll = long long;
long long maxProduct(string s) {
int n = s.size();
vector<int> span(n);
// manacher
for (int i = 0, l = 0, r = -1; i < n; ++i) {
span[i] = (i <= r ? min(span[l + r - i], r - i + 1) : 1);
while (i - span[i] >= 0 && i + span[i] < n && s[i - span[i]] == s[i + span[i]]) {
++span[i];
}
if (i + span[i] - 1 > r) {
l = i - span[i] + 1;
r = i + span[i] - 1;
}
}
vector<int>pre(n);
for(int i=0;i<n;i++) {
pre[i+span[i]-1] = max(pre[i+span[i]-1],span[i]*2-1);
}
for(int i=1;i<n;i++) {
pre[i]=max(pre[i],pre[i-1]);
}
for(int i=n-2;i>=0;i--) {
pre[i] = max(pre[i],pre[i+1]-2);
}
vector<int>suf(n);
long long ans = 0;
for(int i=n-1;i>=0;i--) {
suf[i-span[i]+1] = max(suf[i-span[i]+1],span[i]*2-1);
}
for(int i=n-2;i>=0;i--) {
suf[i]=max(suf[i],suf[i+1]);
}
for(int i=1;i<n;i++) {
suf[i] = max(suf[i],suf[i-1]-2);
}
for(int i=n-1;i>=1;i--) {
ans=max(ans,1ll*suf[i]*pre[i-1]);
}
return ans;
}
};