python科学计算——scipy.optimize

SciPy的optimize模块提供了许多数值优化算法,下面对其中的一些记录。

非线性规划(scipy.optimize.minimize)

一.背景:
现在项目上有一个用python 实现非线性规划的需求。非线性规划可以简单分两种,目标函数为凸函数 or 非凸函数。

凸函数的 非线性规划,比如fun=x2+y2+x*y,有很多常用的python库来完成,网上也有很多资料,比如CVXPY

非凸函数的 非线性规划(求极值),从处理方法来说,可以尝试以下几种:

1.纯数学方法,求导求极值;

2.使用神经网络,深度学习来处理,可参考反向传播算法中链式求导的过程;

3.寻找一些python库来做,本文介绍scipy.optimize.minimize的使用方法

二.库方法介绍

官方文档:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

来看下改方法的入参

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

解释:

fun: 求最小值的目标函数

x0:变量的初始猜测值,如果有多个变量,需要给每个变量一个初始猜测值。minimize是局部最优的解法,所以

args:常数值,后面demo会讲解,fun中没有数字,都以变量的形式表示,对于常数项,需要在这里给值

method:求极值的方法,官方文档给了很多种。一般使用默认。每种方法我理解是计算误差,反向传播的方式不同而已,这块有很大理论研究空间

constraints:约束条件,针对fun中为参数的部分进行约束限制

三.demo

1.计算 1/x+x 的最小值

# coding=utf-8
from scipy.optimize import minimize
import numpy as np
 
#demo 1
#计算 1/x+x 的最小值
 def fun(args):
     a=args
     v=lambda x:a/x[0] +x[0]
     return v
 
 if __name__ == "__main__":
     args = (1)  #a
     x0 = np.asarray((2))  # 初始猜测值
     res = minimize(fun(args), x0, method='SLSQP')
     print(res.fun)
     print(res.success)
     print(res.x)

执行结果:函数的最小值为2点多,可以看出minimize求的局部最优

2.计算 (2+x1)/(1+x2) - 3x1+4x3 的最小值 x1,x2,x3的范围都在0.1到0.9 之间

# coding=utf-8
from scipy.optimize import minimize
import numpy as np
 
# demo 2
#计算  (2+x1)/(1+x2) - 3*x1+4*x3 的最小值  x1,x2,x3的范围都在0.1到0.9 之间
def fun(args):
    a,b,c,d=args
    v=lambda x: (a+x[0])/(b+x[1]) -c*x[0]+d*x[2]
    return v
def con(args):
    # 约束条件 分为eq 和ineq
    #eq表示 函数结果等于0 ; ineq 表示 表达式大于等于0  
    x1min, x1max, x2min, x2max,x3min,x3max = args
    cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x1min},\
              {'type': 'ineq', 'fun': lambda x: -x[0] + x1max},\
             {'type': 'ineq', 'fun': lambda x: x[1] - x2min},\
                {'type': 'ineq', 'fun': lambda x: -x[1] + x2max},\
            {'type': 'ineq', 'fun': lambda x: x[2] - x3min},\
             {'type': 'ineq', 'fun': lambda x: -x[2] + x3max})
    return cons
 
if __name__ == "__main__":
    #定义常量值
    args = (2,1,3,4)  #a,b,c,d
    #设置参数范围/约束条件
    args1 = (0.1,0.9,0.1, 0.9,0.1,0.9)  #x1min, x1max, x2min, x2max
    cons = con(args1)
    #设置初始猜测值  
    x0 = np.asarray((0.5,0.5,0.5))
    
    res = minimize(fun(args), x0, method='SLSQP',constraints=cons)
    print(res.fun)
    print(res.success)
    print(res.x)

执行结果:

对于这种简单的函数,可以看出局部最优的求解和真实最优解相差不大,对于复杂的函数,x0的初始值设置,会很大程度影响最优解的结果。

ADD:

全局最优的函数: scipy.optimize.basinhopping

有一个缺点是无法设置约束,求全局的最优解的函数

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html

非线性方程组求解

SciPy中对非线性方程组求解是fslove()函数,它的调用形式一般为fslove(fun, x0),fun是计算非线性方程组的误差函数,它需要一个参数x,fun依靠x来计算线性方程组的每个方程的值(或者叫误差),x0是x的一个初始值。

"""
计算非线性方程组:
    5x1+3 = 0
    4x0^2-2sin(x1x2)=0
    x1x2-1.5=0
"""
## 误差函数
def fun(x):
    x0,x1,x2 = x.tolist()
    return[5*x1+3,4x0^2-2sin(x1x2),x1x2-1.5]

result = optimize.fsolve(fun,[1,1,1])
## result
[-0.70622057    -0.6    -2.5]

在计算非线性方程中的解时,比如像坐标上升算法,其中需要用到未知数的导数,同样,scipy的fslove()也提供了fprime参数传递未知数的雅各比矩阵从而加速计算,传递的雅各比矩阵每一行时某一方程对各个未知数的导数。对于上面的例子,我们可以写下如下的雅各比矩阵传入。

def j(x):
    x0,x1,x2 = x.tolist()
    return[[0,5,0],[8*x0,-2*x2*cos(x1*x2],[0,x2,x1]]

result = optimize.fsolve(fun,[1,1,1],fprime=j)
#result
[-0.70622057    -0.6    -2.5]

scipy的内部在实现fslove时应该时应该是利用了坐标上升算法或者梯度相关优化算法,但本人没有考证,有兴趣的可以看看源码。

最小二乘拟合

关于最小二乘算法的理论这里并不想谈,网上解释的文章也挺多,在 optimize模块中,可以使用leastsq()对数据进行最小二乘拟合计算。 leastsq()的用法很简单,只需要将计箅误差的函数和待确定参数的初始值传递给它即可。

x = np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78])
y = np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05])
def residual(p):
    k,b = p
    return y-(k*x+b)
r = optimize.leastsq(residual,[1,0])
k,b = r[0]
# print k
0.613495349193
# print b
1.79409254326
def func(x,p):
    """
        计算的正弦波 :A*sin(2*pi*k*x+theta)
    """
    A,k,theta = p
    return A*sin(2*np.pi*k*x+theta)

def redis(p,y,x):
    return y-func(x,p)

x = np.linspace(0,2*np.pi,100)
A,k,theta = 10,0.34,np.pi/6
y0 = func(x,[A,k,theta])
# 加入噪声
np.random.seed(0)
y1 = y0+2*np.random.randn(len(x))
p0 = [7,0.40,0]
# p0是A,k,theta的初始值,y1,x要拟合的数据
plsq = optimize.leastsq(redis, p0,args=(y1,x))
print [A,k,theta]  #真是的参数值
print plsq[0]    #拟合后的参数值

对于像正弦波或者余弦波的曲线拟合,optimize提供curve_fit()函数,它的使用方式和leastq()稍有不同,它直接计算曲线的值,比如上面的拟合正弦波可以用cureve_fit()来写。

def func2(x,p):
    """
        计算的正弦波 :A*sin(2*pi*k*x+theta)
    """
    A,k,theta = p
    return A*sin(2*np.pi*k*x+theta)
ret,_=optimize.curve_fit(func2,x,y1,p0=p0)

该函数有一个缺点就是对于初始值敏感,如果初始频率和真实频率值差太多,会导致最后无法收敛到真是频率。

局部最小值

optimize模块还提供了常用的最小值算法如:Nelder-Mead、Powell、CG、BFGS、Newton-CG等,在这些最小值计算时,往往会传入一阶导数矩阵(雅各比矩阵)或者二阶导数矩阵(黑塞矩阵)从而加速收敛,这些最优化算法往往不能保证收敛到全局最小值,大部分会收敛到局部极小值。这些函数的调用方式为:

optimize.minimize(target_fun,init_val,method,jac,hess)
target_fun:函数的表达式计算;
init_val:初始值;
method:最小化的算法;
jac:雅各比矩阵
hess:黑塞矩阵。

全局最小值算法

全局最小值使用optimize.basinhopping()来实现,这个函数首先要定义一个误差计算方式,比如平方误差函数,niter时迭代的次数,最后还需要一个局部极小值优化方法,minimizer_kwargs传入。比如上面的正弦函数拟合:

def func1(x,p):
    """
        计算的正弦波 :A*sin(2*pi*k*x+theta)
    """
    A,k,theta = p
    return A*sin(2*np.pi*k*x+theta)
def func_error(p,y,x):
    return np.sum((y-func1(x,p)**2)
result = optimize.basinhopping(func_error,[1,1,1],niter=10,
                            minimizer_kwargs={"method":"L-BFGS-B",
                                                "args":(y1,x1)})
## [1,1,1]是传入的初始值,args是需要拟合的数据

题目:

\mathbf{min_x 10-x_1^2 - x_2^2, subject \; to\; x_2\geq x_1^2, x_1+x_2=0}

 

1. 利用拉格朗日乘子法

#导入sympy包,用于求导,方程组求解等等
from sympy import * 
 
#设置变量
x1 = symbols("x1")
x2 = symbols("x2")
alpha = symbols("alpha")
beta = symbols("beta")
 
#构造拉格朗日等式
L = 10 - x1*x1 - x2*x2 + alpha * (x1*x1 - x2) + beta * (x1 + x2)
 
#求导,构造KKT条件
difyL_x1 = diff(L, x1)  #对变量x1求导
difyL_x2 = diff(L, x2)  #对变量x2求导
difyL_beta = diff(L, beta)  #对乘子beta求导
dualCpt = alpha * (x1 * x1 - x2)  #对偶互补条件
 
#求解KKT等式
aa = solve([difyL_x1, difyL_x2, difyL_beta, dualCpt], [x1, x2, alpha, beta])
 
#打印结果,还需验证alpha>=0和不等式约束<=0
for i in aa:
    if i[2] >= 0:
        if (i[0]**2 - i[1]) <= 0:
            print(i)

结果:

(-1, 1, 4, 6)
(0, 0, 0, 0)

2. scipy包里面的minimize函数求解

from scipy.optimize import minimize
import numpy as np 
 
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot as plt 
 
#目标函数:
def func(args):
    fun = lambda x: 10 - x[0]**2 - x[1]**2
    return fun
 
#约束条件,包括等式约束和不等式约束
def con(args):
    cons = ({'type': 'ineq', 'fun': lambda x: x[1]-x[0]**2},
            {'type': 'eq', 'fun': lambda x: x[0]+x[1]})
    return cons 
 
#画三维模式图
def draw3D():
    fig = plt.figure()
    ax = Axes3D(fig)
    x_arange = np.arange(-5.0, 5.0)
    y_arange = np.arange(-5.0, 5.0)
    X, Y = np.meshgrid(x_arange, y_arange)
    Z1 = 10 - X**2 - Y**2
    Z2 = Y - X**2
    Z3 = X + Y
    plt.xlabel('x')
    plt.ylabel('y')
    ax.plot_surface(X, Y, Z1, rstride=1, cstride=1, cmap='rainbow')
    ax.plot_surface(X, Y, Z2, rstride=1, cstride=1, cmap='rainbow')
    ax.plot_surface(X, Y, Z3, rstride=1, cstride=1, cmap='rainbow')
    plt.show()
 
#画等高线图
def drawContour():
    x_arange = np.linspace(-3.0, 4.0, 256)
    y_arange = np.linspace(-3.0, 4.0, 256)
    X, Y = np.meshgrid(x_arange, y_arange)
    Z1 = 10 - X**2 - Y**2
    Z2 = Y - X**2
    Z3 = X + Y
    plt.xlabel('x')
    plt.ylabel('y')
    plt.contourf(X, Y, Z1, 8, alpha=0.75, cmap='rainbow')
    plt.contourf(X, Y, Z2, 8, alpha=0.75, cmap='rainbow')
    plt.contourf(X, Y, Z3, 8, alpha=0.75, cmap='rainbow')
    C1 = plt.contour(X, Y, Z1, 8, colors='black')
    C2 = plt.contour(X, Y, Z2, 8, colors='blue')
    C3 = plt.contour(X, Y, Z3, 8, colors='red')
    plt.clabel(C1, inline=1, fontsize=10)
    plt.clabel(C2, inline=1, fontsize=10)
    plt.clabel(C3, inline=1, fontsize=10)
    plt.show()
 
 
if __name__ == "__main__":
    args = ()
    args1 = ()
    cons = con(args1)
    x0 = np.array((1.0, 2.0))  #设置初始值,初始值的设置很重要,很容易收敛到另外的极值点中,建议多试几个值
    
    #求解#
    res = minimize(func(args), x0, method='SLSQP', constraints=cons)
    #####
    print(res.fun)
    print(res.success)
    print(res.x)
 
    # draw3D()
    drawContour()

结果:

7.99999990708696
True
[-1.00000002  1.00000002]

### 回答1: Python scipy.optimizePython科学计算scipy中的一个模块,它提供了许多用于最小化或寻找方程根的优化算法。这些算法包括无约束和约束的优化、全局优化、最小二乘拟合以及曲线拟合等。它们可用于处理各种问题,如最小化成本、最大化效益、最大化收益等。scipy.optimize模块还支持并行计算和大规模优化问题的求解。无论是初学者还是专业人士,都可以使用Python scipy.optimize来解决他们的优化问题。 ### 回答2: Python中的Scipy.optimize是一个优化算法库,用于解决各种数学优化问题。这个库包含了一系列优化算法,可以帮助用户优化一些目标函数。 Scipy.optimize包含了许多优化算法,其中的一些算法包括最小二乘法、有约束优化、全局优化、非线性方程求解、拟合等。由于优化问题的多样性,使用不同的算法可能会得到不同的结果,因此在选择算法时需要理解问题本身,并进行选择。 优化算法的核心是寻找一个局部最优解或全局最优解。这一过程是通过迭代方法来完成的,迭代过程中的每个步骤都可以用优化算法中的不同方法来处理。不同的算法对优化目标函数的形式和要求有不同的处理方式。使用Scipy.optimize库可以方便地调用这些算法,这些算法经过优化和测试,是最常用的算法。 除了包含不同类型的优化算法,Scipy.optimize还集成了许多其他的辅助工具,例如最优解计算、目标函数的梯度和海森矩阵计算等。 总体而言,Scipy.optimize是一个功能强大的优化算法库,它可以处理各种数学优化问题,包括有约束和无约束问题,凸和非凸问题等等。此外,Scipy.optimize库还提供了许多实用的函数,例如求解目标函数的一阶和二阶导数的函数以及许多常用优化算法,使优化过程更高效、更方便。因此,Scipy.optimizepython优化问题求解的重要库之一。 ### 回答3: Python中的Scipy.optimize模块是一个专门用于求解优化问题的工具包。该模块提供了多种优化算法来最小化或最大化目标函数,并且能够针对不同类型的问题进行使用。 Scipy.optimize模块中包含了多个优化算法,其中大多数算法都用于非线性优化问题。这些算法包括:Nelder-Mead、Powell、CG、BFGS、L-BFGS-B和TNC等。每个算法都有自己的优缺点,并且特别适合不同类型的优化问题。 Scipy.optimize模块的另一个功能是提供了一些特定问题的专用算法。其中包括线性规划、非线性规划、二次规划、整数规划、全局优化等算法。这里有一个例子:线性规划可以用于解决最小化或最大化线性方程组的问题。 在使用Scipy.optimize模块时,需要指定目标函数和隐式约束条件,并且还需要传递初始点以作为算法开始优化的初始值。例如: from scipy.optimize import minimize import numpy as np #定义目标函数 def f(x): return np.sum(x**2) #定义约束条件 #x.sum() - 1 = 0, x_i >= 0, for i=1,...,n cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}, {'type': 'ineq', 'fun': lambda x: x }) #初始点 x0 = [0.25, 0.25, 0.25, 0.25] #最小化方法 res = minimize(f, x0, method='SLSQP', constraints=cons) 在这个例子中,我们定义了一个目标函数f(x) = x1^2 + x2^2 + x3^2 + x4^2,并且只有一个约束条件x1 + x2 + x3 + x4 = 1和所有变量都必须大于等于0。使用Scipy.optimize模块的minimize函数进行优化,以最小化目标函数,这里使用了SLSQP算法。函数的返回值是最优点及其函数值。 总之,PythonScipy.optimize模块是一个广泛使用的工具包,可以用于求解多种类型的优化问题。它与其他Python科学计算工具(如Numpy和Matplotlib等)很好地集成在一起,可以在整个Python科学计算生态系统中广泛使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值