Python优化算法篇 scipy.optimize
Scipy是一个用于数学、科学和工程的开源库,它建立在NumPy的基础上,提供了一系列强大的科学计算工具。在Scipy中,优化模块(scipy.optimize)提供了多种优化算法,用于求解最小化或最大化问题。这个模块涵盖了许多经典的优化算法,包括无约束优化、约束优化、全局优化等。
问题场景:
最优化问题,找到函数的最值。
例如,在进行图像去畸变时,通过不断调整畸变参数,使得关键点坐标尽可能靠近理想点。
优化理论:
最优化方法的思路。多变量多参数优化。
优化算法:
scipy.optimize.minimize
初步理解和简单使用的代码实现可以参考:
【入门】python scipy.optimize.minimize多变量多参数优化
涉及到模块功能,参数解释和不同算法的选择,可以参考:
【进阶】python模块:Scipy.optimize.minimize规划问题求解
【进阶】python非线性规划scipy.optimize.minimize介绍
【实战】python 非线性规划(scipy.optimize.minimize)
【实战】资产组合理论与实战(4) - 使用scipy.optimize.minimize优化
scipy.optimize.basinhopping
Python中的盆地跳跃(Basin Hopping)优化
Python SciPy optimize.basinhopping用法及代码示例
Python scipy.optimize.basinhopping实例讲解