图论之多源汇最短路(floyd算法)

本文详细介绍了图论中的Floyd算法在求解多源汇最短路问题中的应用,包括其在负环处理、传递闭包、排序、观光之旅、牛站等问题中的实现和优化。同时,文章通过实例解析了Floyd算法在不同场景下的变种和解题思路,如最小环和路径记录,并强调了初始化和动态规划的重要性。
摘要由CSDN通过智能技术生成

图论之多源汇最短路

最短路思维导图
floyd
本质是动态规划
闫氏Dp
floyd
经典floyd处理不了负环,要处理负环见P345. 牛站 改版floyd

P854. Floyd求最短路

模板题

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=210,INF=0x3f3f3f3f;
int d[N][N];//邻接矩阵
int n,m,q;
void floyd(){
   
	for(int k=1;k<=n;k++){
   
		for(int i=1;i<=n;i++){
   
			for(int j=1;j<=n;j++){
   
				d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
			}
		}
	}
}
int main(){
   
	scanf("%d%d%d",&n,&m,&q);
	for(int i=1;i<=n;i++){
   
		for(int j=1;j<=n;j++){
   
			if(i==j) d[i][j]=0;
			else d[i][j]=INF;
		}
	}
	while(m--){
   
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		d[a][b]=min(d[a][b],c);
	}
	floyd();
	while(q--){
   
		int a,b;
		scanf("%d%d",&a,&b);
		int t=d[a][b];
		if(t>INF/2) puts("impossible");
		else printf("%d\n",t);
	}
	return 0;
}

P1125. 牛的旅行

Floyd

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define x first
#define y second
using namespace std;
typedef pair<int,int> PII;
const int N=150;
const double INF=1e20;
int n;
PII q[N];
char g[N][N];
double d[N][N],maxd[N];
double get_dist(PII a,PII b){
   //计算点a到点b的距离
	double dx=a.x-b.x,dy=a.y-b.y;
	return sqrt(dx*dx+dy*dy);
}
int main(){
   
	scanf("%d",&n);
	for(int i=0;i<n;i++) scanf("%d%d",&q[i].x,&q[i].y);
	for(int i=0;i<n;i++){
   
		for(int j=0;j<n;j++){
   
			scanf(" %c",&g[i][j]);
		}
	}
	for(int i=0;i<n;i++){
   
		for(int j=0;j<n;j++){
   
			if(i!=j){
   
				if(g[i][j]=='1') d[i][j]=get_dist(q[i],q[j]);
				else d[i][j]=INF;
			}
		}
	}
	//floyd 
	for(int k=0;k<n;k++){
   //下标为0~n-1,不是1~n 
		for(int i=0;i<n;i++){
   
			for(int j=0;j<n;j++){
   
				d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
			}
		}
	}
	//求maxd数组 
	for(int i=0;i<n;i++){
   
		for(int j=0;j<n;j++){
   
			if(d[i][j]!=INF){
   //说明点i和点j连通 
				maxd[i]=max(maxd[i],d[i][j])<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值