蓝桥杯A组——Python(10.08)Day10
- 上课第一天,都是水课真的服了,现在在这紧赶慢赶/(ㄒoㄒ)/~~
W3T3-特殊日期:
记一个日期为 yy 年 mm 月 dd 日,统计从 2000 年 1 月 1 日到 2000000 年 1 月 1 日:
有多少个日期满足年份 yy 是月份 mm 的倍数,同时也是 dd 的倍数。
- 直接暴力破解,但python的耗时太久了,用C语言会比较好
mon = [0,31,28,31,30,31,30,31,31,30,31,30,31]
#判断是否为闰年
def run(x):
if x%400==0 or (x%4==0 and x%100!=0):
return True
return False
res = 0
for year in range(2000,2000000):
if run(year):
mon[2]=29
else:
mon[2]=28
for mm in range(1,13):
for dd in range(1,mon[mm]+1):
if year%mm==0 and year%dd==0:
res += 1
#只迭代到了1999999年12月31日,最后2000000年1月1日也是一个答案
print(res+1)
- 上述为python语言,以下将用C写一个运行速度更快的
#include <stdio.h>
int run(int x)
// 判断是否为闰年
{
if (x % 400 == 0 || (x % 4 == 0 && x % 100 != 0))
{
return 1; // 返回1表示是闰年
}
return 0;
}
int main() {
int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int res = 0;
for (int year = 2000; year <= 2000000; year++) {
if (run(year)) {
mon[2] = 29;
} else {
mon[2] = 28;
}
for (int mm = 1; mm < 13; mm++) {
for (int dd = 1; dd <= mon[mm]; dd++) {
if (year % mm == 0 && year % dd == 0) {
res++;
}
}
}
}
printf("%d\n", res + 1);
return 0;
}
- C的速度是python的若干倍,还是挺好用的
W3T4-分糖果:
两种糖果分别有9个和16个,要全部分给7个小朋友,每个小朋友得到的糖果总数最少为2个最多为5个,问有多少种不同的分法,糖果必须全部分完。
如果有其中一个小朋友在两种方案中分到的糖果不完全相同,这两种方案就算作不同的方案。
- 本题先给代码
import sys
sys.setrecursionlimit(100000) #设置递归深度
a = [0,1,2,0,1,2,3,0,1,2,3,4,0,1,2,3,4,5]
b = [2,1,0,3,2,1,0,4,3,2,1,0,5,4,3,2,1,0]
ans = 0
def dfs(u,c1,c2):
global ans
if u==7:
if not c1 and not c2:
ans += 1
else:
for i in range(len(a)):
if c1>=a[i] and c2>=b[i]:
dfs(u+1,c1-a[i],c2-b[i])
dfs(0,9,16)
print(ans)
- 递归实现深度优先算法
- 解决a,b数组可降低运算复杂度
在原始问题中,我们有7个小朋友,每个小朋友可以得到的糖果总数最少为2个,最多为5个。这意味着每个小朋友可以得到的糖果数量可以是2、3、4或5个。
数组a和b表示的是,对于每个可能的糖果总数(2到5),我们可以如何分配第一种糖果(9个)和第二种糖果(16个)的具体数量。数组a表示第一种糖果的数量,而数组b表示第二种糖果的数量。
为了生成这些数组,我们可以遵循以下逻辑:
1. 糖果总数为2个:只有一种分配方式,即第一种糖果1个,第二种糖果1个。
2. 糖果总数为3个:有两种分配方式,第一种糖果可以是1个或2个,第二种糖果相应地是2个或1个。
3. 糖果总数为4个:有三种分配方式,第一种糖果可以是1个、2个或3个,第二种糖果相应地是3个、2个或1个。
4. 糖果总数为5个:有四种分配方式,第一种糖果可以是1个、2个、3个或4个,第二种糖果相应地是4个、3个、2个或1个。
基于上述逻辑,我们可以构建数组a和b:
数组a表示第一种糖果的数量,从1开始递增,直到糖果总数减去第二种糖果的最小可能数量(即1)。
数组b表示第二种糖果的数量,从糖果总数减去第一种糖果的最大可能数量(即4)开始递减,直到1。
因此,对于糖果总数为2的情况:a[0] = 1和b[0] = 1。对于糖果总数为3的情况:a[1] = 1和b[1] = 2,a[2] = 2和b[2] = 1以此类推。
最终,我们得到数组a和b如下:
a = [0,1,2,0,1,2,3,0,1,2,3,4,0,1,2,3,4,5]:表示对于每个小朋友,第一种糖果的可能分配数量。 b = [2,1,0,3,2,1,0,4,3,2,1,0,5,4,3,2,1,0]
:表示对于每个小朋友,第二种糖果的可能分配数量。
这些数组确保了每个小朋友得到的糖果总数在2到5个之间,并且所有的糖果都被分配完毕。
- 解决a,b的逻辑问题后,本题就简单了
————————————————————————————————————————
艰难依旧坚持,挤时间加油💪
W3(D10)——end