蓝桥杯A组——Python(10.08)Day10

蓝桥杯A组——Python(10.08)Day10

  • 上课第一天,都是水课真的服了,现在在这紧赶慢赶/(ㄒoㄒ)/~~

W3T3-特殊日期:

记一个日期为 yy 年 mm 月 dd 日,统计从 2000 年 1 月 1 日到 2000000 年 1 月 1 日:
有多少个日期满足年份 yy 是月份 mm 的倍数,同时也是 dd 的倍数。

  • 直接暴力破解,但python的耗时太久了,用C语言会比较好
mon = [0,31,28,31,30,31,30,31,31,30,31,30,31]

#判断是否为闰年
def run(x):
    if x%400==0 or (x%4==0 and x%100!=0):
        return True
    return False

res = 0
for year in range(2000,2000000):
    if run(year):
        mon[2]=29
    else:
        mon[2]=28
    for mm in range(1,13):
        for dd in range(1,mon[mm]+1):
            if year%mm==0 and year%dd==0:
                res += 1
#只迭代到了1999999年12月31日,最后2000000年1月1日也是一个答案
print(res+1)
  • 上述为python语言,以下将用C写一个运行速度更快的
#include <stdio.h>

int run(int x) 
// 判断是否为闰年
{  
    if (x % 400 == 0 || (x % 4 == 0 && x % 100 != 0))
     {
        return 1;  // 返回1表示是闰年
    }
    return 0;
}

int main() {
    int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    int res = 0;
    for (int year = 2000; year <= 2000000; year++) {
        if (run(year)) {
            mon[2] = 29;
        } else {
            mon[2] = 28;
        }
        for (int mm = 1; mm < 13; mm++) {
            for (int dd = 1; dd <= mon[mm]; dd++) {
                if (year % mm == 0 && year % dd == 0) {
                    res++;
                }
            }
        }
    }
    printf("%d\n", res + 1);
    return 0;
}
  • C的速度是python的若干倍,还是挺好用的


W3T4-分糖果:

两种糖果分别有9个和16个,要全部分给7个小朋友,每个小朋友得到的糖果总数最少为2个最多为5个,问有多少种不同的分法,糖果必须全部分完。
如果有其中一个小朋友在两种方案中分到的糖果不完全相同,这两种方案就算作不同的方案。

  • 本题先给代码
import sys
sys.setrecursionlimit(100000)  #设置递归深度
a = [0,1,2,0,1,2,3,0,1,2,3,4,0,1,2,3,4,5]
b = [2,1,0,3,2,1,0,4,3,2,1,0,5,4,3,2,1,0]
ans = 0
def dfs(u,c1,c2):
    global ans
    if u==7:
        if not c1 and not c2:
            ans += 1
    else:
        for i in range(len(a)):
            if c1>=a[i] and c2>=b[i]:
                dfs(u+1,c1-a[i],c2-b[i])
dfs(0,9,16)
print(ans)
  • 递归实现深度优先算法
  • 解决a,b数组可降低运算复杂度

在原始问题中,我们有7个小朋友,每个小朋友可以得到的糖果总数最少为2个,最多为5个。这意味着每个小朋友可以得到的糖果数量可以是2、3、4或5个。
数组a和b表示的是,对于每个可能的糖果总数(2到5),我们可以如何分配第一种糖果(9个)和第二种糖果(16个)的具体数量。数组a表示第一种糖果的数量,而数组b表示第二种糖果的数量。

为了生成这些数组,我们可以遵循以下逻辑:
1. 糖果总数为2个:只有一种分配方式,即第一种糖果1个,第二种糖果1个。
2. 糖果总数为3个:有两种分配方式,第一种糖果可以是1个或2个,第二种糖果相应地是2个或1个。
3. 糖果总数为4个:有三种分配方式,第一种糖果可以是1个、2个或3个,第二种糖果相应地是3个、2个或1个。
4. 糖果总数为5个:有四种分配方式,第一种糖果可以是1个、2个、3个或4个,第二种糖果相应地是4个、3个、2个或1个。

基于上述逻辑,我们可以构建数组a和b:
数组a表示第一种糖果的数量,从1开始递增,直到糖果总数减去第二种糖果的最小可能数量(即1)。
数组b表示第二种糖果的数量,从糖果总数减去第一种糖果的最大可能数量(即4)开始递减,直到1。
因此,对于糖果总数为2的情况:a[0] = 1和b[0] = 1。对于糖果总数为3的情况:a[1] = 1和b[1] = 2,a[2] = 2和b[2] = 1以此类推。
最终,我们得到数组a和b如下:
a = [0,1,2,0,1,2,3,0,1,2,3,4,0,1,2,3,4,5]:表示对于每个小朋友,第一种糖果的可能分配数量。 b = [2,1,0,3,2,1,0,4,3,2,1,0,5,4,3,2,1,0]:表示对于每个小朋友,第二种糖果的可能分配数量。
这些数组确保了每个小朋友得到的糖果总数在2到5个之间,并且所有的糖果都被分配完毕。

  • 解决a,b的逻辑问题后,本题就简单了

————————————————————————————————————————
   艰难依旧坚持,挤时间加油💪

W3(D10)——end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值