剑指offer题解(重建二叉树)

剑指Offer题解(重建二叉树)

题目描述:

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

思路:

根据先序遍历规则和中序遍历规则可知,先序遍历的第一个节点为根节点的值,而在中序遍历序列中此节点将序列分为左右两部分,分别是左子树和右子树的中序遍历序列。并且左右序列长度就是左子树和右子树的节点个数,由于先序遍历的规则是先当前节点,再遍历左子树,再遍历右子树,因此可通过计算出的左右节点个数,得到左右子树的先序遍历子序列。经历一次这样的操作之后,就可以得到一个树节点,以及左子树的先序,中序序列。以及右子树的先序,中序序列。因此这个问题又回到了刚开始的时候,所以很容易想到重复上面的步骤就可以将问题继续分而治之,直至子树的先序序列和中序序列只有一个元素时,即得到叶子节点。然后二叉树就构建完毕。

图解示例:

其中:

先序或中序序列的数组的起始以及结束索引由递归程序传入的变量控制。

树结构图中的蓝色虚线箭头表示并未实际建立连接,由于函数递归调用,首先真实建立连接的节点是叶子节点,然后层层与父节点建立连接。当本节点与父节点建立连接时,本节点的子树保证已经建立连接完毕。

橙色实线箭头表示当前函数返回之后将会建立的真实连接。

蓝色实线箭头表示已经真实存在的连接。


在这里插入图片描述

二、
在这里插入图片描述

三、

在这里插入图片描述

四:

在这里插入图片描述

五、

在这里插入图片描述

六、

在这里插入图片描述

七、

在这里插入图片描述

八、

在这里插入图片描述

实际真实的连接建立顺序是这样:
在这里插入图片描述

结合图示和代码,相信你会对这个问题有更深入的理解。

java代码如下:

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
     public TreeNode reConstructBinaryTree(int[] pre, int[] in) {
        if(pre==null||in==null){//如果某个数组不存在则无需进行重构,直接返回null
            return null;
        } 
          TreeNode  root = reBuild(pre,in,0,pre.length-1,0,in.length-1);
            return root;
    }
    /**
    *  pre数组是前序遍历序列
    *  in 数组是中序遍历序列
    *  由于需要递归调用这个函数,因此需要指定子树先序中序序列的起始和结束位置,这样无需变动数组。
    *  pstart 是先序遍历序列的起始位置
    *  pend  是先序遍历序列的结束位置
    *  instart 是中序遍历序列的起始位置
    *  inend 是中序遍历序列的结束位置
    */
    public TreeNode reBuild(int[] pre,int []in,int pstart,int pend,int instart,int inend){
        TreeNode temp = new TreeNode(pre[pstart]);//建立当亲节点
        temp.left = null;
        temp.right = null;
        if(instart == inend&&pstart==pend){//当先序序列和中序序列只有一个值的时候即遇到叶子节点时,无需继续递归,返回叶子节点即可
            return temp;
        }

        int i;
        for(i = instart;i<inend;i++){//找到当前节点位于中序序列的位置,便于分割中序序列。
            if(in[i]==pre[pstart]){
                break;
            }
        }
        int leftlen = i-instart;  //计算左子树长度
        int rightlen = inend-i;  //计算右子树长度
        if(leftlen>0){
            temp.left = reBuild(pre,in,pstart+1,pstart+leftlen,instart,i-1);//递归调用并与左子树建立连接
                        //注意此时的pstart为pstart+1 pend为pstart+leftlen(左子树长度)
                        //        instart不变  inend为当前节点位于中序序列的位置-1 即(i-1)
        }

        if(rightlen>0){
            temp.right = reBuild(pre,in,pstart+1+leftlen,pend,i+1,inend);//递归调用并与右子树建立连接
                        //注意此时的pstart为pstart+1+leftlen pend不变
                        //instart为当前节点位于中序序列的位置+1 即(i+1) inend 不变。
        }
        return temp;
    }
}
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值