对力扣:518.零钱兑换II中的遍历顺序对比纯完全背包问题的思考

题目链接

首先这道题的遍历顺序只能是外层遍历物品,内层遍历背包,如果反过来的话答案就是错误的。但是在纯完全背包问题中,两个遍历顺序可以颠倒过来也不影响结果。
正确遍历代码

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

原因:如果外层是遍历背包,内层是遍历物品的话,那么dp[j - coins[i]]中保存的数值是使用到了所有物品的计算结果,所以可以理解为这种遍历顺序的目前处理位置为这次背包容量扩容之后可以添加新物品的可使用的面额,而不是之前所有处理的位置都是只可以使用到当前面额;而外层遍历物品,内层遍历背包的话,目前处理的位置和之前处理的所有位置都是只能使用到当前面额。

所以外层是遍历背包,内层是遍历物品的顺序如果用背包空间为3,零钱面额为1、2来举例说明的话,当遍历到背包空间为3,面额为1的时候,可能之前背包里已经添加过面额为2的零钱了,这次再添加面额为1的面额即可,为{2、1};遍历到面额为2的时候,又增添了一种{1、2}的方法,所以不同顺序算两种方法,这个是求的排列数量。

但是当外层遍历物品,内层遍历背包的时候,凑齐背包容量的只有{1、2},因为之前没有计算过添加过面额为2的方法数量。

最后一个疑问,那为什么纯完全背包问题遍历顺序就没有影响呢,
看代码

dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);

能看出来,因为纯完全背包问题是替换最大价值,而不是累加方法值,所以相同的方法并没有被累加,而是只保留同样的值,所以不影响。

参考文献:
当 dp[j] 表示填满容量为j的背包有 dp[j]种方案时,dp[j]+= dp[j-value[i]]实际隐含了这样一种含义,即增加以物品i 为结尾的一个可行方案。
对于组合问题,由于不考虑物品顺序,应当先遍历物品,后遍历背包,这样,当我们遍历到物品 i 时,我们每次只会增加物品顺序以物品 i 为结尾的组合。
对于排列问题,则应当先遍历背包,后遍历物品,这样,对于每个背包容量,我们能依次记录以各个物品结尾的可行方案,即考虑了物品的顺序。

参考文献中的个人补充:为什么依次记录以各个物品结尾的可行方案最后能计算出所有排列方法的总和呢,因为每次到背包容量刚能添加进nums[i]时,添加进去只有这一个元素,等下次背包容量扩容时,这个元素就能跑到前面和后面去了,所以其实所有的排列方法都考虑到了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值