给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10]
输出:1
提示:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
coins 中的所有值 互不相同
0 <= amount <= 5000
动态规划
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount+1);
dp[0] = 1;
for(int coin : coins){
for(int j = coin; j <= amount; j++){
dp[j] += dp[j-coin];
}
}
return dp[amount];
}
};
这一题需要注意的是,由于我们只看硬币的组合数,也就是说不在乎顺序。很多人会把coin放到内层循环,这样导致的一个问题就是,会出现类似dp[3] = {1,2},{2,1},但实际上两种情况相等。
以我个人理解,dp[j-coin]实际上就是将coin加上前面的某一组和为j-coin的元素,也就是说,{某一组元素, coin}这样子。当coin在外层循环,进行每一次循环,coin都是最后放进去的,然后依次去累加每个dp[j]的方式数。这能保证在每次外层的coin循环中,组合方式的末尾都是coin,即使经过coins.size()次的循环,可以保证每个dp[j]中的组合方式都是不相同的。
每个组合方式末尾都是coin,这时候,在接下来的coin循环中,也确保了顺序性。
上述做法不会重复计算不同的排列。因为外层循环是遍历数组 coins 的值,内层循环是遍历不同的金额之和,在计算 dp[i] 的值时,可以确保金额之和等于 i 的硬币面额的顺序,由于顺序确定,因此不会重复计算不同的排列。
例如,coins=[1,2],对于 dp[3] 的计算,一定是先遍历硬币面额 1 后遍历硬币面额 2,只会出现以下 2 种组合:
3 = 1+1+1
3 = 1+2
硬币面额 2 不可能出现在硬币面额 1 之前,即不会重复计算 3=2+1 的情况。
456

被折叠的 条评论
为什么被折叠?



