问题描述
小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, ... AN。
小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入格式
第一行包含两个个整数N和K。
第二行包含N个整数A1, A2, ... AN。
对于30%的数据,1 <= N <= 10
对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出格式
一个整数,代表答案。
样例输入
10 0
1 4 2 8 5 7 1 4 2 8
样例输出
6
有思路的话,代码马上就能写出来,其实一开始看到题目给的数据范围的时候就基本可以确定是贪心或者是用动态规划去做了,就是这种先分类再动规的方式真的很少见,也算是学习到了一种新的思路了吧。
分析:
将数分为如下的K类:
0, 0 + K, 0 + 2K, 0 + 3K....
1, 1 + K, 1 + 2K, 1 + 3K....
...
K - 1, (K - 1) + K, (K - 1) + 2K, (K - 1) + 3K...
1. 不同类中的两个数,他们的差不是K. 这样一个类中有多少数 对 其他类中选择什么数没有任何影响。
2. 整体的最优解,就是K个类的最优解之和,剩下的问题就是如何求一个类中的最优解。
3. dp[m] = max(dp[m - K], dp[m - 2 * K] + cnt[m]); //cnt[m]是数据中m出现的次数
#include <iostream>
#include <algorithm>
#include <string.h>
#define MAX_N 100000
using namespace std;
int main()
{
int N, K;
int data[MAX_N + 5], cnt[MAX_N + 5], dp[MAX_N + 5];
cin >> N >> K;
memset(cnt, 0, sizeof(cnt));
for(int i = 0; i < N; i++) {
cin >> data[i];
cnt[data[i]] += 1;
}
int ans = 0;
if(K == 0) {
for(int i = 0; i < N; i++) {
if(cnt[i]) {
ans += 1;
}
}
}else {
for(int i = 0; i < K; i++) {
memset(dp, 0, sizeof(dp));
dp[i] = cnt[i];
dp[i + K] = max(cnt[i + K], cnt[i]);
int temp = dp[i + K];
for(int j = i + 2 * K; j < MAX_N; j += K) {
dp[j] = max(dp[j - K], dp[j - 2 * K] + cnt[j]);
temp = dp[j];
}
ans += temp;
}
}
cout << ans << endl;
return 0;
}
代码很丑,见笑了。