题目
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
示例 1:
输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
提示:
2 <= n <= 58
详解
根据题目意思,对于任意一个正整数n(n>=2),都可以划分成k个正整数之和,那么到底要划分成几个正整数呢?
可以有以下考虑,对于正整数i,可以将其划分成j+(i-j),而对于j以及(i-j),也可以有同样的操作继续进行划分,很明显,该问题可用动态规划的方法解决。那么首先需要搞清楚本题中dp[i]的含义。dp[i]表示将整数i拆分之后得到的最大乘积。 因此,本题需要(n+1)的数组大小。
dp数组确定完毕后,就该寻找递推公式。任意正整数i,拆分后乘积的最大值分为两种情况:
1.将i分为j+(i-j),最大值可能是dp[j] * (i - j),即需要拆分j
2.将i分为j+(i-j),最大值可能是j * (i - j),即不拆分j
为什么(i - j)不拆分呢?实际上利用j从1—>i-1进行遍历,就一定已经考虑过拆分(i - j)的情况了,因为(i - j)的值是从i-1—>1的。
例如将11拆分成dp[6]和5,而5应该是要再拆分成3+2的,但是在处理dp[9]和2时,便是已经覆盖了这种情况了。
因此,递推公式便可以确定出来了,即
dp[i]=max(dp[j]*(i-j),j*(i-j))
最后考虑初始化,由dp数组的定义易知,dp[0]=dp[1]=0
代码
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1,0);//一开始需要给数组赋值为0,方便后面的max比较
for(int i=2;i<=n;i++)
{
for(int j=1;j<=i-1;j++)
{
dp[i]=max(dp[i],max(dp[j]*(i-j),j*(i-j)));
}
}
return dp[n];
}
};