36、深入探讨服务工具代码及事件日志读取

深入探讨服务工具代码及事件日志读取

在软件开发领域,代码的完善性和可操作性至关重要。下面我们将深入分析一段代码存在的问题,并详细介绍如何使用 Visual Basic 读取事件日志。

代码存在的问题

当我们仔细查看示例代码时,会发现它距离商业级质量的代码还有很大差距,存在以下几个方面的问题:
1. 错误检查不足 :部分函数虽能返回表示错误是否发生的值,但无法提供详细的错误信息。返回对象的函数在失败时返回 Nothing ,同样缺少详细错误说明。可采取以下方法解决:
- 添加一个通过引用传递的错误参数,在被调用函数发生错误时设置该参数。
- 创建一个类级别的 “LastError” 样式属性,用于读取最近一次错误的信息。
- 使用 VB 的错误处理机制抛出错误。
2. 缺少超时处理 :当前工具在服务未能按请求启动或停止时,会陷入无限循环。最佳解决方案是设置某种超时机制, SERVICE_STATUS 结构可提供额外信息,帮助检测服务启动或停止操作是否出错。
3. 缺少部分函数 :服务 API 函数中有许多未被实现,如添加和删除服务、配置服务、确定服务依赖关系以及设置服务安全等功能。一个完整的类集应包含这些特性。
4. 与其他工具的交互问题 :该工具在加载时会创建每个服务当前状态的参考列表。若使用其他工具(如控制面板)启动或停止服务,工具无法感知这些变化,也不会更新其内部列表。这意味着使用该工具恢复原始值时,这些值不会反映应用

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值