目录
图像链接
跟着峰哥学计算机视觉所有需要用到的图片-深度学习文档类资源-CSDN下载
概念
什么是图像轮廓
查找和绘制轮廓
轮廓拟合
矩形包围框
最小包围图形
最优拟合椭圆
逼近多边形
轮廓处理
边缘检测虽然能够检测出边缘,但边缘是不连续的,检测到的边缘并不是一个整体。图像轮廓是指将边缘连接起来形成的一个整体,用于后续的计算。
OpenCV提供了查找图像轮廓的函数cv2.findContours(),该函数能够查找图像内的轮廓信息,而函数cv2.drawContours()能够将轮廓绘制出来。图像轮廓是图像中非常重要的一个特征信息,通过对图像轮廓的操作,我们能够获取目标图像的大小、位置、方向等信息。一个轮廓对应着一系列的点,这些点以某种方式表示图像中的一条曲线。
1)查找并绘制轮廓
-
查找轮廓函数:cv2.findContours
-
语法格式:image,contours,hierarchy=cv2.findContours(image,mode,method)
-
返回值
-
image:与函数参数中的原始图像image一致
-
contours:返回的轮廓。该返回值返回的是一组轮廓信息,每个轮廓都是由若干个点所构成的(每个轮廓为一个list表示)。例如,contours[i]是第i个轮廓(下标从0开始),contours[i][j]是第i个轮廓内的第j个点
-
hierarchy:图像的拓扑信息(反映轮廓层次)。图像内的轮廓可能位于不同的位置。比如,一个轮廓在另一个轮廓的内部。在这种情况下,我们将外部的轮廓称为父轮廓,内部的轮廓称为子轮廓。按照上述关系分类,一幅图像中所有轮廓之间就建立了父子关系。每个轮廓contours[i]对应4个元素来说明当前轮廓的层次关系。其形式为:[Next,Previous,First_Child,Parent],分别表示后一个轮廓的索引编号、前一个轮廓的索引编号、第1个子轮廓的索引编号、父轮廓的索引编号
-
-
参数
-
image:原始图像。灰度图像会被自动处理为二值图像。在实际操作时,可以根据需要,预先使用阈值处理等函数将待查找轮廓的图像处理为二值图像。
-
mode:轮廓检索模式,有以下取值和含义:
取值 含义 cv2.RETR_EXTERNAL 只检测外轮廓 cv2.RETR_LIST 对检测到的轮廓不建立等级关系 cv2.RETR_CCOMP 检索所有轮廓并将它们组织成两级层次结构,上面的一层为外边界,下面的一层为内孔的边界 cv2.RETR_TREE 建立一个等级树结构的轮廓 -
method:轮廓的近似方法,主要有如下取值:
取值 含义 cv2.CHAIN_APPROX_NONE 存储所有的轮廓点,相邻两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))=1 cv2.CHAIN_APPROX_SIMPLE 压缩水平方向、垂直方向、对角线方向的元素,只保留该方向的终点坐标 cv2.CHAIN_APPROX_TC89_L1 使用teh-Chinl chain近似算法的一种风格 cv2.CHAIN_APPROX_TC89_KCOS 使用teh-Chinl chain近似算法的一种风格 -
-
注意事项
-
待处理的源图像必须是灰度二值图
-
都是从黑色背景中查找白色对象。因此,对象必须是白色的,背景必须是黑色的
-
在OpenCV 4.x中,函数cv2.findContours()仅有两个返回值
-
-
-
绘制轮廓:drawContours函数
-
语法格式:image=cv2.drawContours(image, contours,contourIdx, color)
-
参数
-
image:待绘制轮廓的图像
-
contours:需要绘制的轮廓,该参数的类型与函数 cv2.findContours()的输出 contours 相同,都是list类型
-
contourIdx:需要绘制的边缘索引,告诉函数cv2.drawContours()要绘制某一条轮廓还是全部轮廓。如果该参数是一个整数或者为零,则表示绘制对应索引号的轮廓;如果该值为负数(通常为“-1”),则表示绘制全部轮廓。
-
color:绘制的颜色,用BGR格式表示
-
-
代码
查看原图像
import cv2
import numpy as np
im = cv2.imread("../data/3.png")
cv2.imshow("im",im)
cv2.waitKey()
cv2.destroyAllWindows()
把执行二值化处理后的图形显现出来
import cv2
import numpy as np
im = cv2.imread("../data/3.png")
cv2.imshow("im", im)
# 灰度化
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
# 二值化
ret, im_binary = cv2.threshold(im_gray,
127, # 阈值设为127
255, # 大于127的设置为255
cv2.THRESH_BINARY)
cv2.imshow("im_binary", im_binary)
cv2.waitKey()
cv2.destroyAllWindows()
cnt的类型
import cv2
import numpy as np
im = cv2.imread("../data/3.png")
# cv2.imshow("im", im)
# 灰度化
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
# 二值化
ret, im_binary = cv2.threshold(im_gray,
127, # 阈值设为127
255, # 大于127的设置为255
cv2.THRESH_BINARY)
# cv2.imshow("im_binary", im_binary)
#查找轮廓
img,cnts,hie = cv2.findContours(im_binary,#原图,经过二值化处理的
cv2.RETR_EXTERNAL,#只检测外轮廓
cv2.CHAIN_APPROX_NONE)#存储所有轮廓点
print(type(cnts))#list
cv2.waitKey()
cv2.destroyAllWindows()
<class 'list'>
打印每一个元素的类型
for cnt in cnts:
print(type(cnt))
检测每个元素的形状
for cnt in cnts:
print(cnt.shape)
第一个轮廓,是由257个点构成的,里面包含子数组,这个子数组是由两个点构成的,一行两列
绘制轮廓
import cv2
import numpy as np
im = cv2.imread("../data/3.png")
# cv2.imshow("im", im)
# 灰度化
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
# 二值化
ret, im_binary = cv2.threshold(im_gray,
127, # 阈值设为127
255, # 大于127的设置为255
cv2.THRESH_BINARY)
# cv2.imshow("im_binary", im_binary)
# 查找轮廓
img, cnts, hie = cv2.findContours(im_binary, # 原图,经过二值化处理的
cv2.RETR_EXTERNAL, # 只检测外轮廓
cv2.CHAIN_APPROX_NONE) # 存储所有轮廓点
# for cnt in cnts:
# print(cnt.shape)
# 绘制轮廓
im_cnt = cv2.drawContours(im, # 原始图像
cnts, # 轮廓数据,findContours的返回值
-1, # 绘制所有轮廓
(0, 0, 255), # 绘制成红色
2) # 轮廓的粗细
cv2.imshow("im_cnt",im_cnt)
cv2.waitKey()
cv2.destroyAllWindows()
绘制索引值为1的轮廓
# 绘制轮廓
im_cnt = cv2.drawContours(im, # 原始图像
cnts, # 轮廓数据,findContours的返回值
1, # 绘制所有轮廓
(0, 0, 255), # 绘制成红色
2) # 轮廓的粗细
绘制轮廓外界矩形框
import cv2
import numpy as np
im = cv2.imread("../data/cloud.png", 0)
cv2.imshow("orig", im)
# 二值化处理
ret, binary = cv2.threshold(im, 127, 255, cv2.THRESH_BINARY)
# 提取图像轮廓
img, contours, hierarchy = cv2.findContours(binary,
cv2.RETR_LIST, # 不建立等级关系
cv2.CHAIN_APPROX_NONE) # 存储所有的轮廓点
print("contours[0].shape:", contours[0].shape)
# 返回轮廓定点及边长
x, y, w, h = cv2.boundingRect(contours[0]) # 计算矩形包围框的x,y,w,h
print("x:", x, "y:", y, "w:", w, "h:", h)
# 绘制矩形包围框
brcnt = np.array([[[x, y]], [[x + w, y]], [[x + w, y + h]], [[x, y + h]]])
cv2.drawContours(im, # 绘制图像
[brcnt], # 轮廓点列表
-1, # 绘制全部轮廓
(255, 255, 255), # 轮廓颜色:白色
2) # 轮廓粗细
cv2.imshow("result", im) # 显示绘制后的图像
cv2.waitKey()
cv2.destroyAllWindows()