模板整理2
动态规划(2)
本篇模板为背包问题的模板,分为四类:
(1)0/1背包
特征:有n个物品,每个物品具有两个属性:体积,价值。求在一定体积下,能获得的最大价值。
代码讲解:f【j】表示使用体积j所能获得的最大价值。注意,第一重循环为阶段,即枚举每个物品,第二重循环为状态,因为物品只能选一个,所以要倒序循环,枚举每个体积,最后f[【j】=max(f[j-v[i]]+w[i])为决策。
cin>>t>>n;
for (int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
for (int j=t;j>=v[i];j--)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
int ans=0;
for (int j=0;j<=t;j++) ans=max(ans,f[j]);
(2)完全背包
特征:与0/1背包唯一不同之处在于每种物品可选无数次。
代码讲解:因与0/1相似,就不细讲,注意因物品无数次,因此既状态循环要正序。
cin>>m;
cin>>n;
for (int i=1;i<=n;i++)
{
cin>>w[i]>>v[i];
}
for (int i=1;i<=n;i++)
{
for (int j=v[i];j<=m;j++)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
int ans=0;
for (int j=0;j<=m;j++) ans=max(ans,f[j]);
(3)多重背包
特征:相似0/1背包,但每种物品数量有不同的限制。
代码讲解:以下给出两种代码,第一种为简单的直接暴力dp枚举每个物品选取1、2、3······个而求出f的值,注意阶段在外层,状态在内层。
for (int i=1;i<=n;i++)
{
for (int j=1;j<=c[i];j++)//c[i]表示第i种物品的数量
for (int k=m;k>=v[i];k--)//不重复,需要倒序
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
第二种为二进制拆分法优化,即将选每种物品1件,2件,4件到n-2的k次方件看作一个物品。
for (int i=1;i<=n;i++)
{
int t=1;//所选物品件数
cin>>x>>y>>z;
while(x>=t)
{
w[++n1]=t*y;
s[n1]=t*z;
x-=t;
t*=2;
}
w[++n1]=x*y;//快要超过了就用剩下的件数
s[n1]=z*x;
}
for (int i=1;i<=n1;i++)
for (int j=v;j>=w[i];j--)
{
f[j]=max(f[j],f[j-w[i]]+s[i]);
}
(4)分组背包
特征:给定n组物品,每组物品有x个不同物品。每组至多选择1个物品。
代码讲解:最内层循环枚举每组的第k个物品。
for (int i=1;i<=n;i++)
{
cin>>x>>y>>id;//id为组号,c[id]表示第id组的第几个物品
c[id]++;
w[id][c[id]]=x;
s[id][c[id]]=y;
}
for (int i=1;i<=t;i++)
for (int j=v;j>=0;j--)
for (int k=1;k<=c[i];k++)
{
if (j>=w[i][k])
f[j]=max(f[j],f[j-w[i][k]]+s[i][k]);
}