模板整理之动态规划(2)

模板整理2

动态规划(2)
本篇模板为背包问题的模板,分为四类:
(1)0/1背包
特征:有n个物品,每个物品具有两个属性:体积,价值。求在一定体积下,能获得的最大价值。
代码讲解:f【j】表示使用体积j所能获得的最大价值。注意,第一重循环为阶段,即枚举每个物品,第二重循环为状态,因为物品只能选一个,所以要倒序循环,枚举每个体积,最后f[【j】=max(f[j-v[i]]+w[i])为决策。

    cin>>t>>n;
    for (int i=1;i<=n;i++)
    {
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;i++)
        for (int j=t;j>=v[i];j--)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    int ans=0;
    for (int j=0;j<=t;j++) ans=max(ans,f[j]);

(2)完全背包
特征:与0/1背包唯一不同之处在于每种物品可选无数次。
代码讲解:因与0/1相似,就不细讲,注意因物品无数次,因此既状态循环要正序。

    cin>>m;
    cin>>n;
    for (int i=1;i<=n;i++)
    {
        cin>>w[i]>>v[i];
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=v[i];j<=m;j++)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    int ans=0;
    for (int j=0;j<=m;j++) ans=max(ans,f[j]);

(3)多重背包
特征:相似0/1背包,但每种物品数量有不同的限制。
代码讲解:以下给出两种代码,第一种为简单的直接暴力dp枚举每个物品选取1、2、3······个而求出f的值,注意阶段在外层,状态在内层。

    for (int i=1;i<=n;i++)
    {
     for (int j=1;j<=c[i];j++)//c[i]表示第i种物品的数量 
         for (int k=m;k>=v[i];k--)//不重复,需要倒序 
         {
             f[j]=max(f[j],f[j-v[i]]+w[i]);
         }
    }

第二种为二进制拆分法优化,即将选每种物品1件,2件,4件到n-2的k次方件看作一个物品。

    for (int i=1;i<=n;i++)
    {
        int t=1;//所选物品件数 
        cin>>x>>y>>z;
        while(x>=t)
        {
            w[++n1]=t*y;
            s[n1]=t*z;
            x-=t;
            t*=2;
        }
        w[++n1]=x*y;//快要超过了就用剩下的件数 
        s[n1]=z*x;
    }
    for (int i=1;i<=n1;i++)
        for (int j=v;j>=w[i];j--)
        {
            f[j]=max(f[j],f[j-w[i]]+s[i]);
        }

(4)分组背包
特征:给定n组物品,每组物品有x个不同物品。每组至多选择1个物品。
代码讲解:最内层循环枚举每组的第k个物品。

    for (int i=1;i<=n;i++)
    {
        cin>>x>>y>>id;//id为组号,c[id]表示第id组的第几个物品 
        c[id]++;
        w[id][c[id]]=x;
        s[id][c[id]]=y;
    }
    for (int i=1;i<=t;i++)
        for (int j=v;j>=0;j--)
            for (int k=1;k<=c[i];k++)
            {
                if (j>=w[i][k])
                    f[j]=max(f[j],f[j-w[i][k]]+s[i][k]);
            }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

19lrf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值