深度学习
文章平均质量分 55
lllindada
这个作者很懒,什么都没留下…
展开
-
非极大抑制
非极大值抑制(Non-Maximum Suppression,NMS)正如其名,如果不是极大值,就将这个结果抑制掉。目标检测中,利用检测方法检测到的结果往往有很多,而我们一般只需要最好的那一个结果。非极大抑制就是以这些检测结果(置信度)的最大的那个检测框作为基准,再对其他结果进行排序。按顺序从排序结果中取出其他结果,如果其他检测结果和最大结果的重叠面积大于我们规定的阈值的话,就说明这个结果是冗余的,就可以把这些结果去掉。如图所示,最初的检测结果有5个,分别为:女:0.98,0.83.原创 2021-05-20 15:45:43 · 312 阅读 · 0 评论 -
to_categorical的用法
to_categorical(y, num_classes=None)将类别向量(从0到nb_classes的整数向量)映射为二值类别矩阵, 用于应用到以categorical_crossentropy为目标函数的模型中.参数y: 类别向量num_classes:总共类别数to_categorical就是将类别向量转换为二进制(只有0和1)的矩阵类型表示。其表现为将原有的类别向量转换为独热编码的形式。原创 2021-02-26 13:05:24 · 8934 阅读 · 0 评论 -
Your input ran out of data; interrupting training. Make sure that your dataset or generat
Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 3000 batches). You may need to use the repeat() function when building your dataset.histo.原创 2021-01-16 16:56:43 · 3117 阅读 · 6 评论