CRC 校验源码分析
这两天做项目,需要用到CRC 校验。以前没搞过这东东,以为挺简单的。结果看看别人提供的汇编源程序,居然看不懂。花了两天时间研究了一下CRC 校验,希望我写的这点东西能够帮助和我有同样困惑的朋友节省点时间。
先是在网上下了一堆乱七八遭的资料下来,感觉都是一个模样,全都是从CRC 的数学原理开始,一长串的表达式看的我头晕。第一次接触还真难以理解。这些东西不想在这里讲,随便找一下都是一大把。我想根据源代码来分析会比较好懂一些。
循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。
2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。
3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得V(x)=A(x)g(x)=xRm(x)+r(x);其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式,g(x)称为生成多项式:g(x)=g0+g1x+ g2x2+...+g(R-1)x(R-1)+gRxR
发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC码字。
4、CRC校验码软件生成方法:
借助于多项式除法,其余数为校验字段。例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1
假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001 x4m(x)=x10+x8+x7+x4 对应的代码记为:10110010000;采用多项式除法: 得余数为: 1111 (即校验字段为:1111)发送方:发出的传输字为: 1 0 1 1 0 0 1 1111信息字段校验字段接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)如果能够除尽,则正确,给出余数(1111)的计算步骤:
除法没有数学上的含义,而是采用计算机的模二除法,即,除数和被除数做异或运算
1011001
1100100
=111101
111101
110010
= 1111
费了老大功夫,才搞清楚CRC 根据”权”(即多项表达式)的不同而相应的源代码也有稍许不同。以下是各种常用的权。
CRC8=X8+X5+X4+1
CRC-CCITT=X16+X12+X5+1
CRC16=X16+X15+X5+1
CRC12=X12+X11+X3+X2+1
CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1
很多资料上都写了查表法来计算,当时是怎么也没想通。其实蛮简单的。假设通过移位处理
了8 个bit 的数据,相当于把之前的CRC 码的高字节(8bit)全部移出,与一个byte 的数据做
XOR 运算,根据运算结果来选择一个值(称为余式),与原来的CRC 码再做一次XOR 运算,
就可以得到新的CRC 码。
不难看出,余式有256 种可能的值,实际上就是0~255 以X16+X12+X5+1 为权得到的CRC
码,可以通过函数crc16l 来计算。以1 为例。
code test[]={0x01};
crc = 0;
ptr = test;
crc = crc16l(ptr,1);
执行结果 crc = 1021,这就是1 对应的余式。
进一步修改函数,我这里就懒得写了,可得到X16+X12+X5+1 的余式表。
code uint crc_ta[256]={ // X16+X12+X5+1 余式表
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
根据这个思路,可以写出以下程序:
uint table_crc(uchar *ptr,uchar len) // 字节查表法求CRC
{
uchar da;
while(len--!=0)
{
da=(uchar) (crc/256); // 以8 位二进制数暂存CRC 的高8 位
crc<<=8; // 左移8 位
crc^=crc_ta[da^*ptr]; // 高字节和当前数据XOR 再查表
ptr++;
}
return(crc);
}
本质上CRC 计算的就是移位和异或。所以一次处理移动几位都没有关系,只要做相应
的处理就好了。
下面给出半字节查表的处理程序。其实和全字节是一回事。
code uint crc_ba[16]={
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
};
uint ban_crc(uchar *ptr,uchar len)
{
uchar da;
while(len--!=0)
{
da = ((uchar)(crc/256))/16;
crc <<= 4;
crc ^=crc_ba[da^(*ptr/16)];
da = ((uchar)(crc/256)/16);
crc <<= 4;
crc ^=crc_ba[da^(*ptr&0x0f)];
ptr++;
}
return(crc);
}
crc_ba[16]和crc_ta[256]的前16 个余式是一样的。
其实讲到这里,就已经差不多了。反正当时我以为自己是懂了。结果去看别人的源代码
的时候,也是说采用CCITT,但是是反相的。如图3
图3 CRC-CCITT 反相运算
反过来,一切都那么陌生,faint.吐血,吐血。
仔细分析一下,也可以很容易写出按位异或的程序。只不过由左移变成右移。
uint crc16r(unsigned char *ptr, unsigned char len)
{
unsigned char i;
while(len--!=0)
{
for(i=0x01;i!=0;i <<= 1)
{
if((crc&0x0001)!=0) {crc >>= 1; crc ^= 0x8408;}
else crc >>= 1;
if((*ptr&i)!=0) crc ^= 0x8408;
}
ptr++;
}
return(crc);
}
0x8408 就是CCITT 的反转多项式。
套用别人资料上的话
“反转多项式是指在数据通讯时,信息字节先传送或接收低位字节,如重新排位影响CRC
计算速度,故设反转多项式。”
如
code uchar crcbuff [] = { 0x00,0x00,0x00,0x00,0x06,0x0d,0xd2,0xe3};
反过来就是
code uchar crcbuff_fan[] = {0xe3,0xd2,0x0d,0x06,0x00,0x00,0x00,0x00};
crc = 0;
ptr = crcbuff_fan;
crc = crc16r(ptr,8);
A
15 14 1 3 12 1 1 + 1 0 9 8 7 6 5 4 + 3 2 1 0 +
执行结果 crc = 0x5f1d;
如想验证是否正确,可改
code uchar crcbuff_fan_result[] = {0xe3,0xd2,0x0d,0x06,0x00,0x00,0x00,0x00,0x1d,0x5f};
ptr = crcbuff_fan_result;
crc = crc16r(ptr,10);
执行结果 crc = 0; 符合CRC 校验的原理。
请注意0x5f1d 在数组中的排列中低位在前,正是反相运算的特点。不过当时是把我搞
的晕头转向。
在用半字节查表法进行反相运算要特别注意一点,因为是右移,所以CRC 移出的4Bit
与数据XOR 的操作是在CRC 的高位端。因此余式表的产生是要以下列数组通过修改函数
crc16r 产生。
code uchar ban_fan[]=
{0,0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x80,0x90,0xa0,0xb0,0xc0,0xd0,0xe0,0xf0};
得出余式表
code uint fan_yushi[16]={
0x0000, 0x1081, 0x2102, 0x3183,
0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xa50a, 0xb58b,
0xc60c, 0xd68d, 0xe70e, 0xf78f
};
uint ban_fan_crc(uchar *ptr,uchar len)
{
uchar da;
while(len--!=0)
{
da = (uchar)(crc&0x000f);
crc >>= 4;
crc ^= fan_yushi [da^(*ptr&0x0f)];
da = (uchar)(crc&0x000f);
crc >>= 4;
crc ^= fan_yushi [da^(*ptr/16)];
ptr++;
}
return(crc);
}
主程序中
crc = 0;
ptr = crcbuff_fan;
crc = ban_fan_crc(ptr,8);
执行结果crc = 0x5f1d;
反相运算的全字节查表法就很容易了,懒的写了。
图1,图2 是用protel DXP 画的,自己感觉太丑了,哪位哥们知道哪种工具画这种东西
最方便,通知一声。嘿。
freebirds