pyspark自定义UDF函数

本文介绍了如何在Pyspark中通过自定义函数并注册为UDF来解决复杂计算问题,展示了如何在大数据场景下(5000万数据)实现高效处理,时间仅需1分钟多钟。
摘要由CSDN通过智能技术生成

当遇到一些复杂特殊的计算场景时,只通过pyspark的内置函数无法达到我们想要实现的效果,此时,可通过自定义函数然后注册为UDF函数,就能够很好的解决复杂计算场景问题,且计算效率非常快速。

# 配置spark接口
import os
import findspark
from pyspark import SparkConf
from pyspark.sql import SparkSession
os.environ["JAVA_HOME"] = "/usr/local/jdk1.8.0_192"
findspark.init("/usr/local/hadoop/spark-2.4.4-bin-hadoop2.6/")
# 设置内存大小
conf = SparkConf()
# conf.set('fs.defaultFS','hdfs://dmns1') # 指定文件路径
conf.set("spark.driver.memory", "4g")
conf.set("spark.executor.memory", "4g")
conf.set("spark.port.maxRetries", "64") # 设置可以绑定的最大端口数
spark = SparkSession.builder.appName("udf_spark").master("local[*]").enableHiveSupport().config(conf=conf).getOrCreate()
spark.sparkContext.setLogLevel('ERROR')
# 导入数据类型
from pyspark.sql.types import IntegerType,DoubleType,StringType
# 实例化自定义类
ov = OfferValue()

# 自定义函数 计算复杂场景
def my_function(offer):
    offer_list = offer.split(',')
    offer_value = ov.get_value(offer_list)
    return offer_value


# 注册为udf函数 命名为my_function
spark.udf.register('my_function',my_function, DoubleType())

# sqlAPI调用udf函数
spark.sql("create table database.table1 stored as parquet as \
select my_function(offer_list) as avg_value \
from database.table2")
# 关闭spark接口
spark.stop()
print(f"计算完成")

计算5000多万数据,仅需一分钟不到,效率非常高。

PySpark中的UDF(User Defined Function,用户自定义函数)是一种特殊类型的函数,允许我们在Spark DataFrame或SQL中使用自定义Python函数作为转换操作。UDF可以用于在列级别上执行自定义的计算或转换。 要创建一个UDF函数,可以使用`pyspark.sql.functions.udf`方法,并将Python函数作为参数传递给它。然后,可以将UDF应用于DataFrame的一列或多列。 下面是一个简单的示例,展示了如何使用PySparkUDF函数: ```python from pyspark.sql import SparkSession from pyspark.sql.functions import udf # 创建SparkSession spark = SparkSession.builder.getOrCreate() # 示例函数:将字符串转换为大写 def to_upper(s): return s.upper() # 注册UDF to_upper_udf = udf(to_upper) # 创建示例DataFrame data = [("John", 25), ("Alice", 30), ("Bob", 35)] df = spark.createDataFrame(data, ["name", "age"]) # 应用UDF到'name'列 df.withColumn("name_upper", to_upper_udf(df["name"])).show() ``` 在上面的示例中,我们首先定义了一个Python函数 `to_upper`,它将字符串转换为大写。然后,我们使用`udf`方法将该函数转换为UDF,并将其命名为`to_upper_udf`。最后,我们将UDF应用于DataFrame的'name'列,并在新列'name_upper'中显示结果。 通过使用UDF函数,我们可以使用自定义Python代码来扩展和定制Spark的功能,以满足特定的需求。希望这个例子能帮助你了解如何在PySpark中使用UDF函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灯下夜无眠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值