计算机视觉
文章平均质量分 94
Liu_LongPo
这个作者很懒,什么都没留下…
展开
-
基于HOG特征的行人检测算法
记录一个用OpenCv库实现的,基于图像HOG特征的行人检测算法#include #include using namespace std;int main(){ bool flag = false; /* if(argc==1) { cout<<"There is no input image!\n"; return 0; } */ const原创 2015-01-24 16:00:43 · 5529 阅读 · 1 评论 -
机器学习实战ByMatlab(四)二分K-means算法
前面我们在是实现K-means算法的时候,提到了它本身存在的缺陷: 1.可能收敛到局部最小值 2.在大规模数据集上收敛较慢对于上一篇博文最后说的,当陷入局部最小值的时候,处理方法就是多运行几次K-means算法,然后选择畸变函数J较小的作为最佳聚类结果。这样的说法显然不能让我们接受,我们追求的应该是一次就能给出接近最优的聚类结果。其实K-means的缺点的根本原因就是:对K个质心的初始选原创 2015-04-17 13:44:00 · 11489 阅读 · 25 评论 -
机器学习实战ByMatlab(一)KNN算法
介绍机器学习算法KNN,并提供matlab,python实例,提供手写识别系统matlab完整代码原创 2015-04-14 13:16:47 · 44098 阅读 · 35 评论 -
论文笔记:Chaotic Invariants of Lagrangian Particle Trajectories for Anomaly Detection in Crowded Scenes
【原创】Liu_LongPo 转载请注明出处 【CSDN】http://blog.csdn.net/llp1992最近在关注 crowd scene方面的东西,因为某些原因需要在crowd scene上实现 anomaly detection,所以看到了这篇论文,该论文是目前在crowd scene中进行abnormal detection做的最好的,记录下笔记当做学习资料。传统的 anomal原创 2015-07-23 16:43:05 · 3911 阅读 · 0 评论 -
机器学习实战ByMatlab(五)Logistic Regression
什么叫做回归呢?举个例子,我们现在有一些数据点,然后我们打算用一条直线来对这些点进行拟合(该曲线称为最佳拟合曲线),这个拟合过程就被称为回归。利用Logistic回归进行分类的主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类。这里的”回归“一词源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时的嘴阀就是寻找最佳拟合曲线,使用的是最优化算法。基于Logistic回归和Sigmo原创 2015-04-18 16:40:44 · 15241 阅读 · 37 评论 -
DeepLearning (六) 学习笔记整理:神经网络以及卷积神经网络
神经网络神经网络模型前向传播反向传播Neural Networds Tips and TricksGradient CheckRegularization激活函数sigmoid 函数TanhRelu稀疏编码卷积神经网络卷积局部感知权值共享多通道卷积卷积输出大小计算公式池化pooling后的平移不变性DropoutLearning rateAdaGrad p原创 2015-11-06 17:14:04 · 8784 阅读 · 2 评论 -
ubuntu14.04+cuda7.5+caffe
一CUDA Repository二CUDA Toolkit三Environment Variables四 安装CUDA SAMPLE五安装 Atlas六opencv 安装七python 安装 也可以使用自带python八安装其他依赖项九caffe安装更详细的caffe 安装参考其他 【原创】Liu_LongPo 转载请注明出处【CSDN】http://blog.csdn.ne原创 2015-12-10 12:47:44 · 3674 阅读 · 0 评论 -
Linux下安装python-opencv
OpenCvPython 【原创】Liu_LongPo 转载请注明出处【CSDN】http://blog.csdn.net/llp1992 系统:Ubuntu 14.04 python : 2.7.10 opencv : 2.4.9OpenCv1、下载 opencv 源码 下载2、解压到任意目录 unzip opencv-2.4.9.zip3、进入源码目录,创建rel原创 2015-11-27 10:22:17 · 29187 阅读 · 10 评论 -
机器学习算法原理与实践(一)、基于感知哈希算法的图像搜索实现
基于感知哈希算法计算出图片的指纹,根据不同图片的指纹计算汉明距离进行图像搜索原创 2015-03-10 17:18:39 · 6840 阅读 · 2 评论 -
机器学习算法原理与实践(二)、meanshift算法图解以及在图像聚类、目标跟踪中的应用
图解meanshift算法,方便理解。公式推导,总结meanshift算法在图像聚类中的应用,总结meanshift算法在目标跟踪的原理和应用原创 2015-03-27 16:53:04 · 14274 阅读 · 11 评论 -
机器学习算法原理与实践(三)、卡尔曼滤波器算法浅析及matlab实战
卡尔曼滤波器是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。而且由于观测包含系统的噪声和干扰的影响,所以最优估计也可看做是滤波过程。卡尔曼滤波器的核心内容就是5条公式,计算简单快速,适合用于少量数据的预测和估计。下面我们用一个例子来说明一下卡尔曼算法的应用。假设我们想在有一辆小车,在 t 时刻其速度为 Vt ,位置坐标为 Pt,ut 表示 t 时刻的加速度,那么我原创 2015-04-29 18:22:25 · 25131 阅读 · 15 评论 -
机器学习算法原理与实践(四)、AdaBoost算法详解与实战
【原创】Liu_LongPo 转载请注明出处 【CSDN】http://blog.csdn.net/llp1992AdaBoost算法是基于单层决策树等弱分类算法的强学习分类算法。单层决策树算法也是一种分类算法,但是其分类效果较差,只根据一个特征进行数据划分,因此单层决策树算法被称为弱分类算法;而AdaBoost算法通过将多个弱分类算法串行训练而成,属于强分类算法。AdaBoost算法是boost原创 2015-06-16 09:25:39 · 7360 阅读 · 5 评论 -
机器学习算法原理与实践(五)、GMM与K-means的那些事
【原创】Liu_LongPo 转载请注明出处【CSDN】http://blog.csdn.net/llp1992GMM算法GMM ,Gaussian Mixture Model,顾名思义,就是说该算法由 多个高斯模型线性叠加 混合而成。每个高斯模型我们称之为 component 。GMM算法描述的是数据的本身存在的一种分布,如果component足够多的话,GMM可以逼近任意一种概率密度分布,但是此原创 2015-07-25 17:05:01 · 22754 阅读 · 11 评论 -
机器学习实战ByMatlab(三)K-means算法
K-means算法属于无监督学习聚类算法,其计算步骤还是挺简单的,思想也挺容易理解,而且还可以在思想中体会到EM算法的思想。K-means 算法的优缺点: 1.优点:容易实现 2.缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据以往的回归算法、朴素贝叶斯、SVM等都是有类别标签y的,因此属于有监督学习,而K-means聚类算法只有x,没有y在聚类问题中,我们的原创 2015-04-17 13:31:53 · 9410 阅读 · 5 评论 -
机器学习实战ByMatlab(二)PCA算法
PCA 算法也叫主成分分析(principal components analysis),主要是用于数据降维的。为什么要进行数据降维?因为实际情况中我们的训练数据会存在特征过多或者是特征累赘的问题,比如:一个关于汽车的样本数据,一个特征是”km/h的最大速度特征“,另一个是”英里每小时“的最大速度特征,很显然这两个特征具有很强的相关性拿到一个样本,特征非常多,样本缺很少,这样的数据用回归去你和将原创 2015-04-15 21:58:35 · 7305 阅读 · 0 评论 -
DeepLearning (四) 基于自编码算法与softmax回归的手写数字识别
【原创】Liu_LongPo 转载请注明出处 【CSDN】http://blog.csdn.net/llp1992softmax 回归模型,是logistic 回归模型在多分类问题上的推广。关于logistic回归算法的介绍,前面博客已经讲得很清楚,详情可以参考博客机器学习实战ByMatlab(五)Logistic Regression 在logistic回归模型中,我们的激励函数sigmoid的原创 2015-05-17 14:26:10 · 7545 阅读 · 13 评论 -
基于OpenCv的运动物体检测算法
基于一个实现的基于OpenCv的运动物体检测算法,可以用于检测行人或者其他运动物体。 #include #include #include #include int main( int argc, char** argv ) { //声明IplImage指针 IplImage* pFrame = NULL; IplImag原创 2015-01-24 16:14:11 · 9013 阅读 · 3 评论 -
csdn 博客编辑 Latex 公式汇总
介绍csdn博客快速编辑Latex的方法和一些常用的Latex公式汇总 一下内容摘自网上原创 2015-03-07 13:52:50 · 5226 阅读 · 3 评论 -
OpenCv_光流法运动目标检测
以下内容摘自一篇硕士论文《视频序列中运动目标检测与跟踪算法的研究》:1950年Gibson首先提出了光流的概念,光流(optical flow)法是空间运动物体在观测成像面上的像素运动的瞬时速度。物体在运动的时候,它在图像上对应点的亮度模式也在做相应的运动,这种图像亮度模式的表观运动就是光流。光流的研究就是利用图像序列中像素的强度数据的时域变化和相关性来确定各自像素位置的“运动”。光流表达了图像的变转载 2015-03-06 14:43:06 · 16055 阅读 · 1 评论 -
fatal error LNK1104: 无法打开文件“opencv_calib3dXXXX.lib”
opencv 配置错误: fatal error LNK1104: 无法打开文件“opencv_calib3d2410.lib”查看一下 opencv D:\Prpgram Files\OpenCv\opencv\build\x86\vc10\lib 目录下的库文件,发信啊他们的版本号所对应的文件都是 248,而不是网上所说的2410,所以原因就是这个,网上搭配教程的版本可能不一样,修改一下就好,原创 2015-03-05 14:26:38 · 10126 阅读 · 1 评论 -
DeepLearning(二) 自编码算法与稀疏性理解与实战
【原创】Liu_LongPo 转载请注明出处 【CSDN】http://blog.csdn.net/llp1992在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 {x(1),x(2),x(3),...x^{(1)},x^{(2)},x^{(3)},...},其中 x(i)∈Rx^{(i)}\in R自编码神经网络是一种无监督学习算法,它使用了反向传原创 2015-05-08 14:26:43 · 10443 阅读 · 2 评论 -
OpenCv_背景差分结合LK金字塔进行运动物体跟踪
结合差分背景法和金字塔LK算法的运动物体检测跟踪。利用差分背景法寻找运动角点,利用金字塔LK计算光流。原创 2015-03-09 21:31:43 · 9202 阅读 · 5 评论 -
OpenCv_Image与光流法中设置ROI区域
附代码详细介绍OpenCv中是如何在Image和光流法中设置ROI区域原创 2015-03-08 20:23:44 · 5117 阅读 · 3 评论 -
OpenCv_cvFindCornerSubPix()查找亚像素级角点
如果我们进行图像处理的目的不是用于识别特征点而是进行稽核测量,则通常需要更高的精度,而cvGoodFeatureToTrack()只能提供简单的像素坐标值,但有时候我们会需要实际坐标值而不是证书坐标值,例如,我们想要确定图形中一个尖锐的峰值点的位置,但是峰值点的位置一般都不会位于一个像素点的正中心,,这时候就可以使用亚像素检测方法。亚像素级角点的位置在社星际标定、跟踪并重建蛇形阿基的轨迹或者重建被跟原创 2015-03-06 18:47:17 · 8340 阅读 · 2 评论 -
OpenCv目标跟踪_cvGoodFeaturesToTrack()寻找角点
在OpenCv中提供了两种实现目标跟踪的关键算法,LK算法和HS算法,也就是通常所说的稀疏光流和稠密光流。寻找角点角点,其实也就是一幅图像中,容易被跟踪的特征点,通常来说,这个点在两个正交方向上都有明显的倒数,该点在图像中我们认为是独一无二的。 从直观上讲,角点是一类有足够信息并且能够从当前帧和下一帧都能提取出来的点。关于角点的定义,是由Harris提出的,其基础是图像灰度强度的二阶导数矩阵 。该原创 2015-03-06 16:40:41 · 8191 阅读 · 2 评论 -
DeepLearning (三) 预处理:主成分分析与白化
【原创】Liu_LongPo 转载请注明出处 【CSDN】http://blog.csdn.net/llp1992PCA算法前面在前面的博客中已经有介绍,这里简单在描述一下,更详细的PCA算法请参考我的博客: 机器学习实战ByMatlab(二)PCA算法 PCA 的主要计算步骤 1.数据预处理,使得每一维数据都有相同的均值0 2.计算数据的协方差矩阵,Σ=1m∑mi=1(x(i))(x(原创 2015-05-11 09:31:39 · 11599 阅读 · 3 评论 -
DeepLearning(一)最佳环境搭配与入门资料
【原创】Liu_LongPo 转载请注明出处 【CSDN】http://blog.csdn.net/llp1992最近由于毕业论文的原因搞得学习进度有点慢,过了5月份再加快进度。DeepLearning,也就是我们所说的深度学习。深度学习是机器学习的一个分支,属于无监督学习,近年来深度学习在语音识别和图像识别等领域取得了巨大的成功。深度学习的本质,就是通过构建具有很多隐层的机器学习模型和海量的训练原创 2015-05-06 13:49:24 · 6086 阅读 · 2 评论 -
机器学习算法原理与实践(六)、感知机算法
感知机感知机模型感知机的学习策略感知机的原始形式伪代码实现代码对线性可分数据集对线性不可分数据集感知机的对偶形式伪代码代码训练过程分类效果训练误差 【原创】Liu_LongPo 转载请注明出处【CSDN】http://blog.csdn.net/llp1992感知机感知机是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别(取+1和-1)。感知机对应于输入空间原创 2016-01-27 14:54:22 · 9350 阅读 · 5 评论