Python缓存提高递归代码性能

问题描述

斐波那契数列的递推公式如下,在编程中最直接的实现方式是使用递归,如果能将每一步的计算结果缓存下来,那计算效率肯定更高

F(1)=1F(2)=1F(n)=F(n1)+F(n2),  n3\begin{array}{l}F(1)=1\\F(2)=1\\F(n)=F(n-1)+F(n-2),\;n\geq3\end{array}




解决方案

使用functools模块中的lru_cache(),使用最久未使用(LRU)缓存算法

PS:该算法在计算结果相同时有用,如time()random()之类的函数是没有用的




代码

from functools import lru_cache


@lru_cache(maxsize=None)
def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)


def fib1(n):
    if n < 2:
        return n
    return fib1(n - 1) + fib1(n - 2)


result = [fib(i) for i in range(16)]
print(result)
print(fib.cache_info())  # 查看命中和未命中次数
# [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
# CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)




对比

%%timeit
[fib(i) for i in range(16)]
# 2.26 µs ± 27.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
[fib1(i) for i in range(16)]
# 567 µs ± 4.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

计算n=16的斐波那契数列的情况下,快250倍。使用了缓存后,n=1000也能轻松计算出来。




参考文献

  1. functools — 高阶函数和可调用对象上的操作
  2. Python的Functools模块简介
  3. Introduction To Python’s Functools Module
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读