Description
一只猫和一只老鼠在10*10的迷宫中。迷宫中的每个方格可以是空的,或者含有障碍。猫和老鼠可以进入任意一个空的方格中。当他们相遇时,猫和老鼠在同一个方格中。但是,无论猫或老鼠都不能进入有障碍的方格。我们可以用字符组成的二维数组表示迷宫,如下图所示。
老鼠在迷宫中按照一种固定的方式行走:每个时刻,老鼠都向它所面对的方向前进一格,这需要花费1秒时间。如果前方是一个障碍或者是迷宫的边界,它将花1秒的时间按顺时针方向转90度。
为了抓到老鼠,这只猫决定也按照与老鼠相同的行走方式行进。
猫和老鼠在每个单位时间内是同时行动的。因此,如果猫和老鼠在行进过程中“擦肩而过”,猫是无法捉到老鼠的。只有当猫和老鼠同时到达一个相同的格子时,猫才能捉住老鼠。
初始时,猫和老鼠不会在同一个方格中。并且它们都面向北方。
你的任务是编一个程序,求出猫捉到老鼠的所花时间。
Input
每组数据由10行组成,每行10个字符,表示迷宫的地图以及猫和老鼠的初始位置。输入数据保证只有一只猫和一只老鼠。
每组输入数据之后均有一个空行作为间隔。
Output
Sample Input
1
......*...
...*...*..
..........
...*.c....
*.....*...
...*......
..m......*
...*.*....
.*.*......
Sample Output
这道题目一看就觉得是个搜索题,就是把老鼠和猫的路径同时记录,然后用BFS就可以得到他们相遇所需要的步数,那么问题来了,如果相遇不了怎么办?一开始我想了很多,比如他这个路径重复很多次还没相遇,卡死在某段路径上一直重复退出,用两个vst来看他们跑完一圈回到一开始的位置的路径是否相交,不相交就不用管了。但是这些并没有什么用,最最最直接的莫过于,if步数很大很大,就return。并且输出0。这个步数要设置成多大呢。。。10*10=100,让老鼠和猫都跑一百圈,一圈最大步数就是100嘛,所以设置为1万我感觉就可以了(然后我默默地开到一百万过了)
代码如下:
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=11;
bool m_vst[maxn][maxn],c_vst[maxn][maxn];
char G[maxn][maxn];
int dir[4][2]={-1,0,0,1,1,0,0,-1};
struct State
{
int c_x,c_y,m_x,m_y;
int c_dir,m_dir;
int Step_Counter;
bool operator == (const State &a)const
{
return (c_dir==a.c_dir&&c_x==a.c_x&&c_y==a.c_y&&m_dir==a.m_dir&&m_x==a.m_x&&m_y==a.m_y);
}
}t;
void bfs(State st)
{
bool c_flag=0,m_flag=0,flag;
queue <State> q;
State now,next;
st.Step_Counter=0;
c_vst[st.c_x][st.c_y]=1;
m_vst[st.m_x][st.m_y]=1;
q.push(st);
while(!q.empty())
{
now=q.front();
if(now.c_x==now.m_x&&now.c_y==now.m_y)
{
printf("%d\n",now.Step_Counter);
return;
}
if(now==st&&now.Step_Counter!=0||now.Step_Counter>100000)
{
printf("0\n");
return;
}
next.c_x=now.c_x+dir[now.c_dir][0];
next.c_y=now.c_y+dir[now.c_dir][1];
next.c_dir=now.c_dir;
next.Step_Counter=now.Step_Counter+1;
if(next.c_x<0||next.c_y<0||next.c_x>=10||next.c_y>=10||G[next.c_x][next.c_y]=='*')
{
next.c_x=now.c_x;
next.c_y=now.c_y;
next.c_dir+=1;
if(next.c_dir>3)
next.c_dir=0;
}
next.m_x=now.m_x+dir[now.m_dir][0];
next.m_y=now.m_y+dir[now.m_dir][1];
next.m_dir=now.m_dir;
if(next.m_x<0||next.m_y<0||next.m_x>=10||next.m_y>=10||G[next.m_x][next.m_y]=='*')
{
next.m_x=now.m_x;
next.m_y=now.m_y;
next.m_dir+=1;
if(next.m_dir>3)
next.m_dir=0;
}
c_vst[next.c_x][next.c_y]++;
m_vst[next.m_x][next.m_y]++;
q.push(next);
q.pop();
}
return;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(c_vst,0,sizeof(c_vst));
memset(m_vst,0,sizeof(m_vst));
for(int i=0;i<10;i++)
{
scanf("%s",&G[i]);
for(int j=0;j<10;j++)
{
if(G[i][j]=='c')
{
t.c_x=i;
t.c_y=j;
t.c_dir=0;
}
if(G[i][j]=='m')
{
t.m_x=i;
t.m_y=j;
t.m_dir=0;
}
}
}
bfs(t);
}
return 0;
}
其实就是一道普通的BFS题,但是又有点特别,就是这个不相交的终止条件,还是步数如果太大,就退出比较靠谱啊