UESTC 994两个圆的公共面积

任给两个圆的圆心坐标和半径,求它们公共部分的面积。

Input

有多组测试数据。输入的第一行是整数 T T 0<T1000 0<T≤1000),表示测试数据的组数。每一组测试数据只有一行,分别为第一个圆的圆心坐标 x1 x1 y1 y1和半径 r1 r1,第二个圆的圆心坐标 x2 x2 y2 y2和半径 r2 r2,六个数均为整数,相邻两数之间有一个空格。该行没有其它多余的符号。 0x1,y1,x2,y2<104 0≤x1,y1,x2,y2<104 0<r1,r2<1000 0<r1,r2<1000

Output

对应每组输入,输出一行两个圆的公共面积,保留两位小数。该行不能有其它多余的符号。

Sample Input
1
0 0 10 19 0 10
Sample Output
4.18


这道题只要知道怎么求,还是很简单的。


这是相交的情况,用余弦公式算出角度,用正弦公式算出三角形面积,因为知道a角大小,那么他对应的扇形面积也是可以确定的。最终,用扇形面积减去三角形(看自己想选哪个三角形)面积就知道相交的面积了。

代码实现:

#include<bits/stdc++.h>
using namespace std;
#define PI acos(-1)
int main()
{
	int T;
	double x1,x2,y1,y2,r1,r2;
	double a,b,s1,s2,d,sum;
	cin >> T;
	while(T--)
	{
		sum = 0;
		cin >> x1 >> y1 >> r1 >> x2 >> y2 >> r2;
		d = sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) );
		if(r1 + r2 <= d)
			puts("0.00");
		else if(r2 >= r1 && d + r1 <= r2)
		{
			printf("%.2lf\n", PI * r1 * r1);
		} 
		else if(r1 > r2 && d + r2 <= r1)
		{
			printf("%.2lf\n", PI * r2 * r2);
		}
		else
		{
			a = (r1 * r1 + d * d - r2 * r2) / (2.0 * r1 * d);
			b = acos(a) * 2.0;
			s1 = r1 * r1 * sin(b) / 2;
			s2 = b / (2 * PI) * PI * r1 * r1;
			sum = s2 - s1;
			
			a = (r2 * r2 + d * d - r1 * r1) / (2.0 * r2 * d);
			b = acos(a) * 2.0;
			s1 = r2 * r2 * sin(b) / 2;
			s2 = b / (2 * PI) * PI * r2 * r2;
			sum += s2 - s1;
			
			printf("%.2lf\n", sum);
		}
		
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值