任给两个圆的圆心坐标和半径,求它们公共部分的面积。
有多组测试数据。输入的第一行是整数 T ( 0<T≤1000 ),表示测试数据的组数。每一组测试数据只有一行,分别为第一个圆的圆心坐标 x1 、 y1 和半径 r1 ,第二个圆的圆心坐标 x2 、 y2 和半径 r2 ,六个数均为整数,相邻两数之间有一个空格。该行没有其它多余的符号。 0≤x1,y1,x2,y2<104 , 0<r1,r2<1000 。
对应每组输入,输出一行两个圆的公共面积,保留两位小数。该行不能有其它多余的符号。
1 0 0 10 19 0 10
4.18
这道题只要知道怎么求,还是很简单的。
这是相交的情况,用余弦公式算出角度,用正弦公式算出三角形面积,因为知道a角大小,那么他对应的扇形面积也是可以确定的。最终,用扇形面积减去三角形(看自己想选哪个三角形)面积就知道相交的面积了。
代码实现:
#include<bits/stdc++.h>
using namespace std;
#define PI acos(-1)
int main()
{
int T;
double x1,x2,y1,y2,r1,r2;
double a,b,s1,s2,d,sum;
cin >> T;
while(T--)
{
sum = 0;
cin >> x1 >> y1 >> r1 >> x2 >> y2 >> r2;
d = sqrt( (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) );
if(r1 + r2 <= d)
puts("0.00");
else if(r2 >= r1 && d + r1 <= r2)
{
printf("%.2lf\n", PI * r1 * r1);
}
else if(r1 > r2 && d + r2 <= r1)
{
printf("%.2lf\n", PI * r2 * r2);
}
else
{
a = (r1 * r1 + d * d - r2 * r2) / (2.0 * r1 * d);
b = acos(a) * 2.0;
s1 = r1 * r1 * sin(b) / 2;
s2 = b / (2 * PI) * PI * r1 * r1;
sum = s2 - s1;
a = (r2 * r2 + d * d - r1 * r1) / (2.0 * r2 * d);
b = acos(a) * 2.0;
s1 = r2 * r2 * sin(b) / 2;
s2 = b / (2 * PI) * PI * r2 * r2;
sum += s2 - s1;
printf("%.2lf\n", sum);
}
}
return 0;
}