最小路径覆盖的模板题。但是我是在hihocoder上才学到这个模版的,hihocoder上面有最小路径覆盖浅显易懂的解释,非常棒!
代码如下:
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<utility>
#include<stack>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1000 + 10;
const int maxm = 30005;
int n, m;
vector<int>road[205];
int road_num = 0;
inline int read()
{
int x=0,t=1,c;
while(!isdigit(c=getchar()))if(c=='-')t=-1;
while(isdigit(c))x=x*10+c-'0',c=getchar();
return x*t;
}
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],flow[maxm<<1],ppp=0;
struct Dinic
{
int dis[maxn];
int s, t;
long long ans;
void init() {
memset(head, -1, sizeof(head));
ppp = 0;
}
void AddEdge(int u, int v, int c)
{
to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
}
bool BFS()
{
memset(dis, -1, sizeof(dis));
dis[s] = 1;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int x = Q.front();
Q.pop();
for(int i = head[x]; ~i; i = nx[i])
{
if(flow[i] && dis[to[i]] == -1)
{
dis[to[i]] = dis[x] + 1;
Q.push(to[i]);
}
}
}
return dis[t] != -1;
}
int DFS(int x, int maxflow)
{
if(x == t || !maxflow){
ans += maxflow;
return maxflow;
}
int ret = 0, f;
for(int &i = cur[x]; ~i; i = nx[i])
{
if(dis[to[i]] == dis[x] + 1 && (f = DFS(to[i], min(maxflow, flow[i]))))
{
ret += f;
flow[i] -= f;
flow[i^1] += f;
maxflow -= f;
if(!maxflow)
break;
}
}
return ret;
}
long long solve(int source, int tank)
{
s = source;
t = tank;
ans = 0;
while(BFS())
{
memcpy(cur, head, sizeof(cur));
DFS(s, INF);
}
return ans;
}
}dinic;
void dfs(int x) {
for(int i = head[x]; ~i; i = nx[i]) {
int v = to[i];
if(flow[i] == 0 && v != 0) {
road[road_num].push_back(v / 2);
dfs(v - 1);
}
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
dinic.init();
n = read(), m = read();
while(m--) {
int u = read(), v = read();
dinic.AddEdge(u * 2, v * 2 + 1, 1);
}
for(int i = 1; i <= n; i++) {
dinic.AddEdge(0, i * 2, 1);
dinic.AddEdge(i * 2 + 1, 1, 1);
}
int ans = dinic.solve(0, 1);
for(int i = 1; i <= n; i++) {
bool flag = 0;
for(int j = head[i * 2 + 1]; ~j; j = nx[j]) {
int v = to[j];
if(flow[j] && to[j] == 1) {
flag = 1;
}
}
if(flag) {
road[road_num].push_back(i);
dfs(i * 2);
road_num++;
}
}
for(int i = 0; i < road_num; i++) {
sort(road[i].begin(), road[i].end());
for(int j = 0; j < road[i].size(); j++) {
printf("%d%c", road[i][j], j == road[i].size() - 1 ? '\n' : ' ');
}
}
cout << n - ans << '\n';
return 0;
}