岛娘网络流合集上的题目。
题意:给出一些街道,一开始只有编号1的家庭有网络,其他家庭要想有网络都要从1号家庭拉网线(且只能从1号家庭拉)。现在要求k个家庭(已给出)有网络,而且还有一个规定就是每个街道的网线颜色必须不一样。问最少要多少种颜色的网线。
解法:我们直接构图可以想到,直接用一个起点s到k个家庭连接一个流量为1的边,然后编号为1的家庭作为汇点t。给出的每条道路,由于是无向的,所以建正反两条边,如果每条道路流量为INF,那么k个家庭肯定有网可用,但是如果每条道路的流量为1,样例1都无法成立。但是假设每条边流量为2,那么样例1就可以解释通了。所以想到的是二分一下道路的流量,其实就是每条路的颜色总数,这样保证不超过某个值。找到恰好满足的情况,输出颜色数即可。
代码如下:(忘记初始化wa了n发)
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<utility>
#include<stack>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<map>
using namespace std;
const int maxn = 1000 + 5;
const int maxm = 500000 + 5;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
inline int read() {
int x=0,t=1,c;
while(!isdigit(c=getchar()))if(c=='-')t=-1;
while(isdigit(c))x=x*10+c-'0',c=getchar();
return x*t;
}
int n, m, k;
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],flow[maxm<<1],ppp=0;
struct Dinic {
int dis[maxn];
int s, t;
int ans;
void init() {
memset(head, -1, sizeof(head));
ppp = 0;
}
void AddEdge(int u, int v, int c) {
to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
}
bool BFS() {
memset(dis, -1, sizeof(dis));
dis[s] = 1;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int x = Q.front();
Q.pop();
for(int i = head[x]; ~i; i = nx[i]) {
if(flow[i] && dis[to[i]] == -1) {
dis[to[i]] = dis[x] + 1;
Q.push(to[i]);
}
}
}
return dis[t] != -1;
}
int DFS(int x, int maxflow) {
if(x == t || !maxflow){
ans += maxflow;
return maxflow;
}
int ret = 0, f;
for(int &i = cur[x]; ~i; i = nx[i]) {
if(dis[to[i]] == dis[x] + 1 && (f = DFS(to[i], min(maxflow, flow[i])))) {
ret += f;
flow[i] -= f;
flow[i^1] += f;
maxflow -= f;
if(!maxflow)
break;
}
}
return ret;
}
int solve(int source, int tank) {
s = source;
t = tank;
ans = 0;
while(BFS()) {
memcpy(cur, head, sizeof(cur));
DFS(s, INF);
}
return ans;
}
}dinic;
vector <pii> edge;
int a[maxn];
void build(int mid) {
dinic.init();
for(int i = 0; i < k; i++) {
dinic.AddEdge(0, a[i], 1);
}
for(int i = 0, u, v; i < m; i++) {
u = edge[i].first;
v = edge[i].second;
dinic.AddEdge(u, v, mid);
dinic.AddEdge(v, u, mid);
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
int T;
scanf("%d", &T);
while(T--) {
dinic.init();
edge.clear();
scanf("%d%d%d", &n, &m, &k);
for(int i = 0, u; i < k; i++) {
scanf("%d", &a[i]);
}
for(int i = 0, u, v; i < m; i++) {
scanf("%d%d", &u, &v);
edge.push_back(pii(u, v));
}
int front = 0, back = 505;
while(back > front) {
int mid = (front + back) / 2;
build(mid);
int ans = dinic.solve(0, 1);
// cout << mid << ' ' << ans << '\n';
if(ans < k) {
front = mid + 1;
} else {
back = mid;
}
}
printf("%d\n", back);
}
return 0;
}