SPOJ Smart Network Administrator(二分+网络流)

岛娘网络流合集上的题目。

题意:给出一些街道,一开始只有编号1的家庭有网络,其他家庭要想有网络都要从1号家庭拉网线(且只能从1号家庭拉)。现在要求k个家庭(已给出)有网络,而且还有一个规定就是每个街道的网线颜色必须不一样。问最少要多少种颜色的网线。

解法:我们直接构图可以想到,直接用一个起点s到k个家庭连接一个流量为1的边,然后编号为1的家庭作为汇点t。给出的每条道路,由于是无向的,所以建正反两条边,如果每条道路流量为INF,那么k个家庭肯定有网可用,但是如果每条道路的流量为1,样例1都无法成立。但是假设每条边流量为2,那么样例1就可以解释通了。所以想到的是二分一下道路的流量,其实就是每条路的颜色总数,这样保证不超过某个值。找到恰好满足的情况,输出颜色数即可。

代码如下:(忘记初始化wa了n发)

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<utility>
#include<stack>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<map>
using namespace std;
const int maxn = 1000 + 5;
const int maxm = 500000 + 5;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;

inline int read() {
	int x=0,t=1,c;
	while(!isdigit(c=getchar()))if(c=='-')t=-1;
	while(isdigit(c))x=x*10+c-'0',c=getchar();
	return x*t;
}
int n, m, k;
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],flow[maxm<<1],ppp=0;
struct Dinic {
	int dis[maxn];
	int s, t;
	int ans;
	
	void init() {
		memset(head, -1, sizeof(head));
		ppp = 0;
	}
	
	void AddEdge(int u, int v, int c) {
		to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
		to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
	}
	
	bool BFS() {
		memset(dis, -1, sizeof(dis));
		dis[s] = 1; 
		queue<int> Q;
		Q.push(s);
		while(!Q.empty()) {
			int x = Q.front();
			Q.pop();
			for(int i = head[x]; ~i; i = nx[i]) {
				if(flow[i] && dis[to[i]] == -1) {
					dis[to[i]] = dis[x] + 1;
					Q.push(to[i]);
				}
			}
		}
		return dis[t] != -1;
	}
	
	int DFS(int x, int maxflow) {
		if(x == t || !maxflow){
			ans += maxflow;
			return maxflow;
		}
		int ret = 0, f;
		for(int &i = cur[x]; ~i; i = nx[i]) {
			if(dis[to[i]] == dis[x] + 1 && (f = DFS(to[i], min(maxflow, flow[i])))) {
				ret += f;
				flow[i] -= f;
				flow[i^1] += f;
				maxflow -= f;
				if(!maxflow)
					break;
			}
		}
		return ret;
	}
	
	int solve(int source, int tank) {
		s = source;
		t = tank;
		ans = 0;
		while(BFS()) {
			memcpy(cur, head, sizeof(cur));
			DFS(s, INF);
		}
		return ans;
	}
}dinic;

vector <pii> edge;
int a[maxn];

void build(int mid) {
	dinic.init();
	for(int i = 0; i < k; i++) {
		dinic.AddEdge(0, a[i], 1);
	}
	for(int i = 0, u, v; i < m; i++) {
		u = edge[i].first;
		v = edge[i].second;
		dinic.AddEdge(u, v, mid);
		dinic.AddEdge(v, u, mid);
	}
}

int main() {
#ifndef ONLINE_JUDGE
	freopen("in.txt", "r", stdin);
//    freopen("out.txt", "w", stdout);
#endif
	int T;
	scanf("%d", &T); 
	while(T--) {
		dinic.init();
		edge.clear();
		scanf("%d%d%d", &n, &m, &k);
		for(int i = 0, u; i < k; i++) {
			scanf("%d", &a[i]);
		}
		for(int i = 0, u, v; i < m; i++) {
			scanf("%d%d", &u, &v);
			edge.push_back(pii(u, v));
		}
		int front = 0, back = 505;
		while(back > front) {
			int mid = (front + back) / 2;
			build(mid);
			int ans = dinic.solve(0, 1);
//			cout << mid << ' ' << ans << '\n';
			if(ans < k) {
				front = mid + 1;
			} else {
				back = mid;
			}
		}
		printf("%d\n", back);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值