Elasticsearch性能调优之索引写入性能优化

本文介绍了Elasticsearch性能调优中的索引写入性能优化方法,包括使用bulk批量写入、多线程并发写入、调整refresh间隔、禁止refresh和replica、禁止内存交换、增加filesystem cache内存、使用自动生成的id、升级硬件以及优化index buffer。通过这些策略,可以显著提高Elasticsearch的写入性能和集群资源利用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1和2,适合的是,你的es java client程序,可以采取批量写的场景
3,比较通用的,比较合适的是,你对于写入数据到可以读到能够接受比较大的延迟
4,一次性批量导入数据的场景
5/6/7/8/9,通用型,尽量都去做到

1/2/3/4,都是有各自适用的场景,如果场景合适,就尽量用,因为对性能的提升都是很明显的

5/6/7/8/9,其中通用,尽量去优化你的集群,但是其中最重要的,就是3块,filesystem cache更大的内存,给index buffer最充足的内存,一个是用SSD固态硬盘

1、用bulk批量写入

你如果要往es里面灌入数据的话,那么根据你的业务场景来,如果你的业务场景可以支持,可以做到,让你将一批数据聚合起来,一次性写入es,那么就尽量采用bulk的方式,每次批量写个几百条这样子。

bulk批量写入的性能比你一条一条写入大量的document的性能要好很多。但是如果要知道一个bulk请求最佳的大小,需要对单个es node的单个shard做压测。先bulk写入100个document,然后200个,400个,以此类推,每次都将bulk size加倍一次。如果bulk写入性能开始变平缓的时候,那么这个就是最佳的bulk大小。并不是bulk size越大越好,而是根据你的集群等环境具体要测试出来的,因为越大的bulk size会导致内存压力过大,因此最好一个请求不要发送超过10mb的数据量。

2、使用多线程将数据写入es

单线程发送bulk请求是无法最大化es集群写入的吞吐量的。如果要利用集群的所有

<think>嗯,用户想了解Elasticsearch性能优化的最佳实践,包括整参数和索引策略。我需要根据提供的引用资料来整理回答。首先,引用[1]提到化需要多方面的措施,比如索引设计、硬件配置和查询。引用[2]详细讲了索引设计的关键策略,比如分片设置、冷热数据分离和索引模板。引用[4]解释了倒排索引的重要性,分片数设置的建议。还有引用[3]提到缓存策略和监控的重要性。 我应该分几个部分来组织回答。首先是索引设计化,包括分片大小、冷热架构、索引模板和滚动管理。然后是硬件和参数配置,涉及内存、线程池、刷新间隔和合并策略。接下来是查询化,比如避免通配符、使用过滤上下文、分页控制和预索引。最后是维护与监控部分,包括缓存、定期维护和监控工具。 需要注意用户可能对分片设置的具体数值和合并策略的参数不太清楚,要给出具体的建议值。同时,要引用对应的文献,比如分片大小不超过50GB来自引用[2],冷热架构在引用[2]也有提到。线程池整在引用[3]可能涉及,但引用中没有直接说明,可能需要确认。不过根据现有资料,尽量关联正确的引用。 还要生成相关问题,可能需要从不同的化方面提问,比如分片策略、查询、硬件配置等。确保问题覆盖用户可能关心的其他方面。最后检查LaTeX格式是否正确,比如变量用$...$,独立公式用$$...$$,但当前内容中可能没有数学公式,所以暂时不需要处理。回答结构要清晰,分点说明,帮助用户一步步理解化方法。</think>### Elasticsearch性能优化最佳实践分步说明 #### 一、索引设计化 1. **分片策略** - 单分片数据量控制在$20GB-50GB$,避免分片过大影响查询性能[^2] - 索引创建时预定义分片数,遵循公式:$$总分片数 = \lceil 数据总量/40GB \rceil$$[^4] - 采用`冷热数据分离架构`,热节点使用SSD存储高频访问数据 2. **索引结构化** - 禁用非必要字段的`_source`和`_all`元数据字段[^4] - 对数值型字段使用`doc_values`替代fielddata ```json PUT my_index/_mapping { "properties": { "price": { "type": "integer", "doc_values": true } } } ``` #### 二、硬件与参数配置 1. **内存管理** - JVM堆内存设置为物理内存的50%,不超过32GB[^3] - 设置`indices.breaker.total.limit`为70%堆内存 2. **线程池** ```yaml thread_pool: write: size: 4 queue_size: 1000 search: size: 8 queue_size: 2000 ``` 根据CPU核心数动态整线程池参数[^1] 3. **写入化参数** - 增大`refresh_interval`至30s-60s - 设置`index.translog.durability`为async异步提交[^2] #### 三、查询性能优化 1. **查询语句规范** - 避免使用`wildcard`通配符查询,改用ngram分词[^4] - 对范围查询使用`range`替代`script`脚本[^2] - 使用`filter`上下文替代query上下文,利用bitset缓存[^3] 2. **分页化** - 深度分页使用`search_after`替代`from/size` - 设置`max_result_window`限制返回条数 #### 四、维护与监控 1. **缓存策略** - 开启`query cache`和`request cache` - 定期清除不再使用的索引缓存 2. **段合并化** - 设置`index.merge.policy.max_merged_segment`为5GB - 整`max_thread_count`为CPU核数的50%[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值