pyspark 任务提交 依赖打包

如果是一个简单的应用,没用多余的依赖,则可以直接提交就行了:

spark-submit 
--master yarn 
--deploy-mode cluster 
--conf spark.yarn.executor.memoryOverhead=4096 
--executor-memory 2G 
--num-executors 4 
--executor-cores 2 
--driver-memory 2G 
test.py

 

如果是一个比较大的工程,里面有很多相互依赖,则需要把依赖也传上去。python不像Java项目一样,用maven打个包就可以提交了。python需要你手动把工程打成zip包。

注意,打包的时候一定要进入根目录打包,打完包点进去直接到模块的目录,不能再有一层目录;

提交的时候,直接用--py-files  xxx.zip即可。

另外, 自己写的项目无论是包名还是py文件名,还是类或者方法名,千万别跟Python自带的重名

附录:spark-submit的一些配置参数

————master MASTER_URL         spark://host:port, mesos://host:port, yarn,k8s://https://host:port, or local (Default: local[*]).
————deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") oron one of the worker machines inside the cluster ("cluster")(Default: client).
————class CLASS_NAME          Your application's main class (for Java / Scala apps).
————name NAME                 A name of your application.
————jars JARS                 Comma-separated list of jars to include on the driverand executor classpaths.
————packages                  Comma-separated list of maven coordinates of jars to includeon the driver and executor classpaths. Will search the localmaven repo, then maven central and any additional remoterepositories given by 
————repositories. The format for thecoordinates should be groupId:artifactId:version.
————exclude-packages          Comma-separated list of groupId:artifactId, to exclude whileresolving the dependencies provided in 
————packages to avoiddependency conflicts.
————repositories              Comma-separated list of additional remote repositories tosearch for the maven coordinates given with 
————packages.
————py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to placeon the PYTHONPATH for Python apps.
————files FILES               Comma-separated list of files to be placed in the workingdirectory of each executor. File paths of these filesin executors can be accessed via SparkFiles.get(fileName).
————conf PROP=VALUE           Arbitrary Spark configuration property.
————properties-file FILE      Path to a file from which to load extra properties. If notspecified, this will look for conf/spark-defaults.conf.
————driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
————driver-java-options       Extra Java options to pass to the driver.
————driver-library-path       Extra library path entries to pass to the driver.
————driver-class-path         Extra class path entries to pass to the driver. Note thatjars added with 
————jars are automatically included in theclasspath.
————executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).
————proxy-user NAME           User to impersonate when submitting the application.This argument does not work with 
————principal / 
————keytab.
————help, -h                  Show this help message and exit.
————verbose, -v               Print additional debug output.
————version,                  Print the version of current Spark.Cluster deploy mode only:
————driver-cores NUM          Number of cores used by the driver, only in cluster mode(Default: 1).Spark standalone or Mesos with cluster deploy mode only:
————supervise                 If given, restarts the driver on failure.
————kill SUBMISSION_ID        If given, kills the driver specified.
————status SUBMISSION_ID      If given, requests the status of the driver specified.Spark standalone and Mesos only:
————total-executor-cores NUM  Total cores for all executors.Spark standalone and YARN only:
————executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,or all available cores on the worker in standalone mode)YARN-only:
————queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
————num-executors NUM         Number of executors to launch (Default: 2).If dynamic allocation is enabled, the initial number ofexecutors will be at least NUM.
————archives ARCHIVES         Comma separated list of archives to be extracted into theworking directory of each executor.
————principal PRINCIPAL       Principal to be used to login to KDC, while running onsecure HDFS.
————keytab KEYTAB             The full path to the file that contains the keytab for theprincipal specified above. This keytab will be copied tothe node running the Application Master via the SecureDistributed Cache, for renewing the login tickets and thedelegation tokens periodically.

 

<think>好的,用户问的是PySpark报错“python worker exit”的问题。我需要先理解这个错误的常见原因,然后逐步解释可能的解决方法。 首先,这个错误通常发生在PySpark任务执行过程中,尤其是当Executor的Python工作进程意外退出时。可能的原因有很多,比如内存不足、Python代码中的异常、依赖项问题,或者序列化错误。 我应该先列出常见的原因,然后针对每个原因给出解决方法。用户可能需要结构清晰的解答,所以分点说明比较好。 内存问题是一个常见原因,尤其是Executor或Driver的内存不足。这时候需要调整内存配置,比如增加executor内存或者调整堆内存参数。 Python代码中的未捕获异常也可能导致工作进程崩溃。用户需要检查日志中的异常堆栈,或者尝试在代码中添加更详细的异常处理。 依赖项不一致也是一个可能性,尤其是在集群环境中,各节点的依赖版本可能不一致。建议使用虚拟环境或conda环境来统一依赖,或者用--py-files上传依赖。 序列化问题,比如在传递不可序列化的对象时出错,应该避免在Spark操作中使用无法序列化的对象,比如数据库连接等资源。 此外,资源不足如executor数量太少或CPU不足也可能导致问题。需要根据任务调整资源配置,如executor数量、核心数等。 还有Python版本兼容性问题,比如PySparkPython版本不匹配。检查官方文档确认兼容性,确保所有节点使用相同版本。 系统层面的问题,如文件权限或磁盘空间不足,也需要检查。用户可能需要查看系统日志,如dmesg或/var/log/syslog,寻找OOM Killer等线索。 最后,建议用户提供更多上下文,比如错误日志、代码片段和集群配置,以便更准确地诊断问题。如果初步方法无效,可以尝试简化代码到最小复现案例,逐步排查。 需要确保回答清晰,分步骤说明,帮助用户系统地排查问题。同时提醒用户检查日志和配置调整的具体方法,比如Spark提交参数。</think>PySpark 报错 `python worker exit` 通常发生在 Spark 的 **Executor 进程**中的 Python 子进程(工作进程)意外退出时。以下是分步排查和解决方法: --- ### **1. 常见原因** #### **(1) 内存不足** - **Executor 内存溢出**:Python 进程因内存不足被系统终止(常见于大数据处理或复杂计算)。 - **堆外内存(Off-Heap)溢出**:Spark 的堆外内存设置不合理。 #### **(2) Python 代码异常** - **未捕获的异常**:用户代码中未处理的异常(如空指针、类型错误)导致进程崩溃。 - **第三方库问题**:使用了与 Spark 不兼容的库(如多线程操作)。 #### **(3) 依赖项不一致** - **Python 环境问题**:Driver 和 Executor 的 Python 环境不一致(如库版本不同)。 - **缺少依赖**:Executor 节点缺少必要的 Python 包。 #### **(4) 序列化问题** - **不可序列化对象**:在 Spark 操作(如 `map`、`foreach`)中传递了不可序列化的对象(如文件句柄、数据库连接)。 --- ### **2. 排查步骤** #### **(1) 查看详细日志** -Spark 的 Executor 日志中查找 `stderr` 或 `stdout` 输出(位于 `$SPARK_HOME/logs` 或集群管理界面)。 - 搜索关键字:`Exception`、`Error`、`Killed`。 #### **(2) 检查系统资源** - 使用 `dmesg` 或 `/var/log/syslog` 查看是否因内存不足触发了 `OOM Killer`(进程被系统强制终止)。 #### **(3) 最小化复现代码** - 逐步注释代码,定位到触发问题的具体操作(如某个 `map` 或 `UDF`)。 --- ### **3. 解决方法** #### **(1) 调整内存配置** ```python spark = SparkSession.builder \ .config("spark.executor.memory", "4g") \ # 增加 Executor 内存 .config("spark.executor.memoryOverhead", "2g") \ # 增加堆外内存 .config("spark.driver.memory", "4g") \ # 增加 Driver 内存 .getOrCreate() ``` #### **(2) 检查 Python 代码** - 在 UDF 或 `map` 操作中添加异常捕获: ```python from pyspark.sql.functions import udf @udf("string") def safe_udf(x): try: # 你的逻辑 return result except Exception as e: print(f"Error: {e}") return None ``` #### **(3) 统一依赖环境** - 使用 `venv` 或 `conda` 打包 Python 环境: ```bash # 打包虚拟环境 zip -r my_env.zip my_env/ # 提交时指定环境 spark-submit --archives my_env.zip \ --conf spark.pyspark.python=./my_env/bin/python \ your_script.py ``` #### **(4) 避免不可序列化对象** - 不要在 Spark 操作中直接使用外部资源(如数据库连接)。改用 `broadcast` 变量或在 Executor 内部初始化: ```python def process_partition(partition): # 在 Executor 内部创建连接 conn = create_db_connection() for row in partition: # 处理逻辑 conn.close() rdd.foreachPartition(process_partition) ``` #### **(5) 检查资源分配** - 确保 Executor 数量和核心数合理: ```python spark = SparkSession.builder \ .config("spark.executor.instances", "4") \ # 调整 Executor 数量 .config("spark.executor.cores", "2") \ # 调整每个 Executor 的核心数 .getOrCreate() ``` --- ### **4. 高级调试** - **启用 Spark 调试日志**:在 `spark-submit` 中添加 `--conf spark.logConf=true`。 - **使用 PySpark 远程调试**:通过 `pdb` 或 IDE 远程调试 Executor 进程(需集群支持)。 --- ### **5. 典型错误示例** ```log # 日志中可能出现的线索 Caused by: java.io.EOFException: Unexpected end of input stream at org.apache.spark.api.python.PythonWorkerFactory.startDaemon(PythonWorkerFactory.scala:210) ``` 这通常表明 Python 进程在启动时崩溃,可能因依赖项缺失或环境问题导致。 --- 如果问题仍未解决,请提供以下信息以进一步排查: 1. 完整的错误日志(包括堆栈跟踪)。 2. 触发错误的代码片段。 3. Spark 集群配置(Standalone/YARN/K8s)。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值