k=int(0) m=float(0) c=float(0) l=int(0) z=[0.0,0.0,0.0] n = int(input()) a = [([0 for i in range(n)])for i in range(n)] jz = [([0 for i in range(n)])for i in range(n)] for i in range(0,n): for j in range(0,n): if i==j: jz[i][j]=float(1) #定义一个单位矩阵 print("请输入一个矩阵:(一行一行的输入)") for i in range(0,n) : for j in range(0,n) : a[i][j]=float(input()) #输入一个矩阵 def zhao(a,s): b = float(0) for i in range(s, n): for j in range(s, n): if abs(a[i][j])>=b: b = a[i][j] z[0] = i z[1] = j #创建找最大行标和列标的函数 z[2] = b return z def hh(a,k,s): m = a[s] a[s] = a[k] a[k] = m #创建行变换函数 return a def hl(a,l,s): for i in range(0, n): c = a[i][s] a[i][s] = a[i][l] a[i][l] = c #创建列变换函数 return a for s in r
全主元三角分解实验报告(数值线性代数)(未使用numpy)
最新推荐文章于 2024-10-29 18:29:01 发布
该文描述了一个用于矩阵三交分解的算法实现过程,包括寻找最大主元、行变换和列变换函数,以及如何处理矩阵范围变化导致的错误。程序首先定义了必要的变量和数据结构,然后通过用户输入获取矩阵,接着进行一系列的矩阵操作使其变为上三角形和下三角形矩阵。
摘要由CSDN通过智能技术生成