HDOJ 3549 Flow Problem --- Dinic算法模板

Dinic最大流算法解析
本文深入探讨了Dinic最大流算法的实现细节,通过具体代码展示了如何解决最大流问题。从初始化网络到使用广度优先搜索(BFS)和深度优先搜索(DFS)进行流量增广,详细解释了算法的每一步操作。

题解:最大流问题,套dinic模板即可

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int INF = 1e9;

int n,m;
int dis[3000];
struct Edge {
    int to, nxt, c;
} e[3000];
int head[3000];
int cnt = 0;

void add(int a, int b, int c) {
    cnt++;
    e[cnt].to = b;
    e[cnt].c = c;
    e[cnt].nxt = head[a];
    head[a] = cnt;
}

void init() {
    cnt = -1;
    memset(head, - 1, sizeof(head));
}

bool bfs(int st, int ed) {
    queue<int> q;
    memset(dis, -1, sizeof(dis));
    dis[st] = 0;
    q.push(st);
    while(!q.empty()) {
        int x = q.front();
        q.pop();
        for(int i = head[x]; i != -1; i = e[i].nxt) {
            int now = e[i].to;
            if(dis[now] == -1 && e[i].c) {
                dis[now] = dis[x] + 1;
                q.push(now);
            }
        }
    }
    return dis[ed] != -1;
}

int dfs(int st,int ed, int maxflow) {
    if(st == ed) {
        return maxflow;
    }
    int ans = 0;
    for (int i = head[st]; i!=-1; i = e[i].nxt) {
        int now = e[i].to;
        if(dis[now]!=dis[st]+1 || e[i].c==0 || maxflow <= ans) continue;
        int f = dfs(now, ed, min(e[i].c, maxflow-ans));
        e[i].c -= f;
e[i^1].c += f; 
        ans += f;
    }
  //  if(!ans) dis[st] = -1;
    return ans;
}

int Dinic(int st, int ed) {
    int ans = 0;
    while(bfs(st, ed)) {
        int k = 0;
        k = dfs(st, ed, INF);
            ans += k;
    }
    return ans;
}

int main() {
    int t;
    scanf("%d",&t);
    for(int i = 1;i <= t;i++) {
        init();
        scanf("%d%d", &n,&m);
        while(m--) {
            int u,v,t;
            scanf("%d%d%d",&u,&v,&t);
            add(u,v,t);
add(v,u,0);
        }
        printf("Case %d: %d\n", i, Dinic(1,n));
    }

    return 0;
}

 

html,css,按钮 精选按钮样式设计美学与交互体验全解析 在数字产品的交互设计中,按钮作为连接用户与功能的关键桥梁,其样式设计直接影响用户体验与界面质感。本页面基于buttons.css样式库,精心呈现了一系列兼具美学价值与实用功能的按钮设计方案,为开发者与设计师提供直观的视觉参考与代码借鉴。 按钮设计看似简单,实则融合了视觉心理学、交互逻辑与品牌调性的多重考量。从极简的单色按钮到富有层次感的立体按钮,从静态的基础样式到带有hover动效的交互反馈,每一款设计都兼顾了视觉吸引力与操作清晰度。例如页面中展示的药丸反色按钮,通过圆润的边角处理(button-pill类)与高对比度的色彩反转(button-inverse类),既强化了视觉焦点,又在移动端场景中提升了触控识别度,尤其适合作为主要操作按钮使用。 页面采用简洁明快的布局逻辑,浅色背景与高对比度按钮形成鲜明视觉层次,每个按钮示例均搭配详细说明,清晰标注样式类名与适用场景。这种设计不仅便于开发者快速定位所需样式,更能帮助设计初学者理解"样式类组合"的设计思路——通过基础类与修饰类的灵活搭配,可衍生出海量符合不同场景需求的按钮样式,大幅提升开发效率。 无论是电商平台的购买按钮、社交应用的交互按钮,还是工具类产品的功能按钮,本页面展示的设计方案均遵循"一致性与差异性平衡"的原则:基础样式保持统一的视觉语言,确保界面整体性;特殊场景按钮通过色彩、形状或动效的微调,实现功能区分与重点突出。此外,所有按钮样式均基于标准化CSS类实现,便于开发者直接复用或根据品牌调性进行二次定制,兼顾了设计美感与开发实用性。 对于追求高效开发的团队而言,这样的样式库不仅能减少重复劳动,更能保障产品界面的设计一致性;对于设计师而言,这些经过实践验证的按钮样式可作为创意起点,在此基础上探索更具个性的设计表达。浏览本页面时,建议结合实际产品场
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值