HDOJ1286 找新朋友 ---- 欧拉函数

题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1286

Problem Description

新年快到了,“猪头帮协会”准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的号码肯定和N有大于1的公约数,否则都是新朋友,现在会长想知道究竟有几个新朋友?请你编程序帮会长计算出来。

 

 

Input

第一行是测试数据的组数CN(Case number,1<CN<10000),接着有CN行正整数N(1<n<32768),表示会员人数。

 

 

Output

对于每一个N,输出一行新朋友的人数,这样共有CN行输出。

 

 

Sample Input


 

2 25608 24027

 

 

Sample Output


 

7680 16016

题解:

对于任意大于1的正整数n,在1...n-1中有φ(n) 个数与n互质,φ(n)称为欧拉函数。

欧拉函数公式: φ(n) = n * ∑(1-1/pi)  (pi为n的质因数)。

推论: 当n为质数时,φ(n)=n - 1.   

           n的质因数之和 = φ(n) * n / 2.

 

#include <cstdio>
#include <cstring>
using namespace std;

// 欧拉函数
int Euler(int n) {
    int cnt = n;
    int temp = n;
    // 找质因数
    for(int i = 2;i * i <= temp;i++) {
        if(temp % i == 0) {
            cnt = cnt / i * (i-1);
        }
        while(temp % i == 0) temp /= i;
    }
    if(temp > 1)
        cnt = cnt / temp * (temp-1);
    return cnt;    
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--) {
        int n;
        scanf("%d",&n);
        printf("%d\n",Euler(n));
    }
    return 0;
}

 

阅读更多
换一批

没有更多推荐了,返回首页