1、题目描述
小蓝在一个 n 行 m 列的方格图中玩一个游戏。
开始时,小蓝站在方格图的左上角,即第 1 行第 1 列。
小蓝可以在方格图上走动,走动时,如果当前在第 r 行第 c 列,他不能走到行号比 r 小的行,也不能走到列号比 c 小的列。同时,他一步走的直线距离不超过 3。
例如,如果当前小蓝在第 3 行第 5 列,他下一步可以走到第 3 行第 6 列、第 3 行第 7 列、第 3行第 8 列、第 4 行第 5列、第 4 行第 6 列、第 4行第 7 列、第 5 行第 5 列、第 5 行第 6 列、第 6 行第 5 列之一。
小蓝最终要走到第 n 行第 m 列。
在图中,有的位置有奖励,走上去即可获得,有的位置有惩罚,走上去就要接受惩罚。奖励和惩罚最终抽象成一个权值,奖励为正,惩罚为负。
小蓝希望,从第 1行第 1 列走到第 n行第 m列后,总的权值和最大。请问最大是多少?
输入描述
输入的第一行包含两个整数 n, m表示图的大小。
接下来 n行,每行 m个整数,表示方格图中每个点的权值。
其中,1<=n<=100, -10^4<=权值<=10^4
输出描述
输出一个整数,表示最大权值和。
输入输出样例
示例 1
输入
3 5
-4 -5 -10 -3 1
7 5 -9 3 -10
10 -2 6 -10 -4
输出
15
运行限制
- 最大运行时间:1s
- 最大运行内存: 128M
2、问题:看过题之后,没什么思路,只会搞个嵌套循环,将输入的权值存入一个二维数组中,然后就看了算法库中别人的题解,看了也有些时间。
3、思路
经典的动态规划的思路,通过记事本的方式记录下来前面的位置的最大的权值,在后续计算的时候不需要重复计算,从而减少计算量。这道题的递推的方式是对当前(i,j)点进行判断时,通过对其前面的可以到达该点的8个点分别判断然后选出最大的到达该点的路径,之后进行存储,然后最终得出终点的最大权值。
package practice;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
int[][] arr1 = new int[n + 1][m + 1];//存储每个点的权值
int[][] arr2 = new int[n + 1][m + 1];//存储从起点到当前位置的最大的总权值
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
arr1[i][j] = scan.nextInt();
if (i == 1 && j == 1) {
arr2[i][j] = arr1[i][j];//初始化 1,1 的位置
} else {
arr2[i][j] = -10000;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (i == 1 && j == 1) {
continue;//结束当前所在循环当前次序,进行下一次循环
}
for (int k = 0; k < 3; k++) {
for (int h = 0; h < 3; h++) {
if (h == 0 && k == 0) {//对自身不判断
continue;
}
if (i - k > 0 && j - h > 0 && arr2[i - k][j - h] + arr1[i][j] > arr2[i][j]) {
arr2[i][j] = arr2[i - k][j - h] + arr1[i][j];
}
}
}
}
}
System.out.println(arr2[n][m]);
scan.close();
}
}
package practice;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
int[][] arr = new int[n + 1][m + 1];
int a = 0;
int[] x = new int[]{0, 0, 0, -1, -1, -1, -2, -2, -3};
int[] y = new int[]{-3, -2, -1, -2, -1, 0, -1, 0, 0};
for(int i = 1;i <=n;i++) {
for (int j = 1; j <= m; j++) {
arr[i][j] = scan.nextInt();
}
}
for(int i = 1; i <=n;i++) {
for (int j = 1; j <= m; j++) {
a = Integer.MIN_VALUE;
for (int k = 0; k < x.length; k++) {
if (i + x[k] >= 1 && j + y[k] >= 1) {//求权值的最大值
a = Math.max(a, arr[i + x[k]][j + y[k]]);
}
}
if (a != Integer.MIN_VALUE) {
arr[i][j] += a;
}
}
}
System.out.println(arr[n][m]);
scan.close();
}
}
4、总结:尝试了一种新的算法,从而开阔了自己的思维,了解了整型类型的范围
在JDK中,整形类型是有范围的,最大值为Integer.MAX_VALUE,即2147483647,最小值为Integer.MIN_VALUE -2147483648。
Integer.MAX_VALUE + 1 = Integer.MIN_VALUE
Math.abs(Integer.MIN_VALUE) = Integer.MIN_VALUE (绝对值)
Long,short,byte的结论是相同的。