HFM
LFM信号存在距离和多普勒频移的耦合以及匹配滤波器输出旁瓣较高的问题。双曲调频信号有利于高速运动目标的检测。
S
H
(
t
)
=
A
r
e
c
t
(
t
T
)
e
x
p
[
−
j
2
π
μ
l
n
(
1
−
f
0
t
μ
)
]
S_H(t) = A rect(\frac{t}{T}) exp\left[-j2\pi \mu ln(1-\frac{f_0 t}{\mu})\right]
SH(t)=Arect(Tt)exp[−j2πμln(1−μf0t)]
ϕ
H
(
t
)
=
−
2
π
μ
l
n
[
1
−
f
0
t
/
μ
]
\phi_H(t) = -2 \pi \mu ln [1-f_0 t/\mu]
ϕH(t)=−2πμln[1−f0t/μ]
μ
=
T
f
m
i
n
f
m
a
x
B
\mu = \frac{Tf_{min}f_{max}}{B}
μ=BTfminfmax
B
=
f
m
a
x
−
f
m
i
n
B = f_{max}-f_{min}
B=fmax−fmin
f
0
=
(
f
m
a
x
+
f
m
i
n
)
/
2
f_0 = (f_{max}+f_{min})/2
f0=(fmax+fmin)/2
LFM的相位曲线是二次函数,HFM的相位曲线是对数函数
LFM的频谱在带宽内几乎平坦,HFM的频谱拖着长尾递减