HFM和LFM的对比

HFM

LFM信号存在距离和多普勒频移的耦合以及匹配滤波器输出旁瓣较高的问题。双曲调频信号有利于高速运动目标的检测。
S H ( t ) = A r e c t ( t T ) e x p [ − j 2 π μ l n ( 1 − f 0 t μ ) ] S_H(t) = A rect(\frac{t}{T}) exp\left[-j2\pi \mu ln(1-\frac{f_0 t}{\mu})\right] SH(t)=Arect(Tt)exp[j2πμln(1μf0t)]
ϕ H ( t ) = − 2 π μ l n [ 1 − f 0 t / μ ] \phi_H(t) = -2 \pi \mu ln [1-f_0 t/\mu] ϕH(t)=2πμln[1f0t/μ]
μ = T f m i n f m a x B \mu = \frac{Tf_{min}f_{max}}{B} μ=BTfminfmax
B = f m a x − f m i n B = f_{max}-f_{min} B=fmaxfmin
f 0 = ( f m a x + f m i n ) / 2 f_0 = (f_{max}+f_{min})/2 f0=(fmax+fmin)/2
LFM的相位曲线是二次函数,HFM的相位曲线是对数函数
LFM的频谱在带宽内几乎平坦,HFM的频谱拖着长尾递减
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值