题目链接
题目翻译:
厨师Monocarp刚刚把n道菜放进了烤箱。他知道第i道菜最佳的烹饪时间是ti 分钟。
在任何正整数时间点T,Monocarp最多只能从烤箱中拿出一道菜。如果第i道菜在第T分钟拿出来,那么其不高兴值为 |T-ti| 。一旦菜从烤箱拿出来,就不能再放回去。
Monocarp需要将所有菜从烤箱拿出来,求他能得到的最小不开心值。
解题思路:
动态规划,用数组f[i][j] 表示在第i分钟拿出前j道菜得到的最小不开心值。
对于每个i和j,有两种情况,在第i分钟,要么取第j道菜,要么不取第j道菜。
如果取,那就是在前i-1分钟取完前j-1道菜,然后在第i分钟取第j道菜。那么不开心值就是f[i-1][j-1]+abs(t[j]-i)
。其中t[j]表示第j道菜的最佳烹饪时间。
如果不取,那就是在前i-1分钟就取完了前j道菜。不开心值就是f[i-1][j]
。
所以状态转移公式就是f[i][j]=min(f[i-1][j],f[i-1][j-1]+abs(t[j]-i))
。
还有一个问题是i的范围是多少,因为ti≤n,所以在得到最小不开心值的前提下,在2*n时间内能取完所有的菜。
代码:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 410;
int T,n,t[N],f[N][N];
int main() {
// freopen("1.txt","r",stdin);
cin>>T;
while(T--) {
cin>>n;
for(int i=1; i<=n; i++) {
cin>>t[i];
}
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
f[i][j]=inf;
}
}
sort(t+1,t+n+1);
f[0][0]=0;
for(int i=1;i<=2*n;i++){
f[i][0]=0;
for(int j=n;j>=1;j--){
f[i][j]=min(f[i-1][j],f[i-1][j-1]+abs(t[j]-i));
}
}
cout<<f[2*n][n]<<endl;
}
return 0;
}
代码优化:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 410;
int T,n,t[N],f[N];
int main() {
// freopen("1.txt","r",stdin);
cin>>T;
while(T--) {
cin>>n;
for(int i=1; i<=n; i++) {
cin>>t[i];
}
for(int i=0;i<N;i++){
f[i]=inf;
}
sort(t+1,t+n+1);
f[0]=0;
for(int i=1;i<=2*n;i++){
for(int j=n;j>=1;j--){
f[j]=min(f[j],f[j-1]+abs(t[j]-i));
}
}
cout<<f[n]<<endl;
}
return 0;
}
总结:
感觉自己应该写出来的,毕竟这种题目和自己之前刷的题差差不多。
尽管时间充裕。
还是得多刷刷动态规划