Educational Codeforces Round 97 1437C Chef Monocarp

题目链接

在这里插入图片描述

题目翻译:

厨师Monocarp刚刚把n道菜放进了烤箱。他知道第i道菜最佳的烹饪时间是ti 分钟。
在任何正整数时间点T,Monocarp最多只能从烤箱中拿出一道菜。如果第i道菜在第T分钟拿出来,那么其不高兴值为 |T-ti| 。一旦菜从烤箱拿出来,就不能再放回去。
Monocarp需要将所有菜从烤箱拿出来,求他能得到的最小不开心值。

解题思路:

动态规划,用数组f[i][j] 表示在第i分钟拿出前j道菜得到的最小不开心值。
对于每个i和j,有两种情况,在第i分钟,要么取第j道菜,要么不取第j道菜。
如果,那就是在前i-1分钟取完前j-1道菜,然后在第i分钟取第j道菜。那么不开心值就是f[i-1][j-1]+abs(t[j]-i)。其中t[j]表示第j道菜的最佳烹饪时间。
如果不取,那就是在前i-1分钟就取完了前j道菜。不开心值就是f[i-1][j]
所以状态转移公式就是f[i][j]=min(f[i-1][j],f[i-1][j-1]+abs(t[j]-i))
还有一个问题是i的范围是多少,因为ti≤n,所以在得到最小不开心值的前提下,在2*n时间内能取完所有的菜。

代码:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 410;
int T,n,t[N],f[N][N];
int main() {
//	freopen("1.txt","r",stdin);
	cin>>T;
	while(T--) {
		cin>>n;
		for(int i=1; i<=n; i++) {
			cin>>t[i];
		}
		for(int i=0;i<N;i++){
			for(int j=0;j<N;j++){
				f[i][j]=inf;
			}
		}
		sort(t+1,t+n+1);
		f[0][0]=0;
		for(int i=1;i<=2*n;i++){
			f[i][0]=0;
			for(int j=n;j>=1;j--){
				f[i][j]=min(f[i-1][j],f[i-1][j-1]+abs(t[j]-i));
			}
		}
		cout<<f[2*n][n]<<endl;
	}
	return 0;
}
代码优化:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 410;
int T,n,t[N],f[N];
int main() {
//	freopen("1.txt","r",stdin);
	cin>>T;
	while(T--) {
		cin>>n;
		for(int i=1; i<=n; i++) {
			cin>>t[i];
		}
		for(int i=0;i<N;i++){
			f[i]=inf;
		}
		sort(t+1,t+n+1);
		f[0]=0;
		for(int i=1;i<=2*n;i++){
			for(int j=n;j>=1;j--){
				f[j]=min(f[j],f[j-1]+abs(t[j]-i));
			}
		}
		cout<<f[n]<<endl;
	}
	return 0;
}
总结:

感觉自己应该写出来的,毕竟这种题目和自己之前刷的题差差不多。
尽管时间充裕。
还是得多刷刷动态规划

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值