elasticsearch入门基本知识+使用案例

1、ES逻辑结构
    索引-index:相当于db中的数据库名。索引命名规则:小写字母。
    类型-type:相当于数据库中的表名,为具有相同字段的文档定义的一个类型。
    字段-field:相当于表字段名,文档数据的属性命名
    映射-mapping:可以设置字段的数据类型、默认值、分析器、是否被索引等规则,是对文档的约束。常见的mapping属性包括:
        type:字段数据类型,常见的简单类型有:
            字符串:text(可分词的文本,与analyzer搭配使用)、keyword(精确值,不可分词,例如:国家名称、ip地址)
            数值:long、integer、short、byte、double、float
            布尔:boolean
            日期:date
            对象:object,嵌套子对象
        index:是否创建索引,默认为true。当设置为false时,该字段不参与搜索
        analyzer:分词器类型,ik_smart 粗粒度分词   ik_max_word 细粒度分词
        properties:嵌套对象的字段定义
    文档-document:相当于表中的一行数据,存在于index/type下面。文档以JSON格式存储,能够被索引
2、拓展ik分词器的词库,只需要修改ik分词器目录中的config/IKAnalyzer.cfg.xml文件:
    去掉无效分词、新增词典设置、
    ik_smart 粗粒度分词   ik_max_word 细粒度分词
3、DSL语法
    创建索引库: PUT /索引库名
        PUT /heima
        {
          "mappings": {
            "properties": {
              "info":{
                "type": "text",
                "index": true,
                "analyzer": "ik_max_word"      //创建分词,建立倒排索引(词根 -> 文档编号)
                "search_analyzer": "pinyin" //搜索分词器,例如按照拼音分词做搜索
              },
              "email":{
                "type": "keyword",
                "index": false
              },
              "name":{
                "type": "object",
                "properties": {
                  "firstName":{
                    "type":"keyword"
                  },
                  "lastName":{
                    "type":"keyword"
                  }
                }
              }
            }
          }
        }
    查询索引库: GET /索引库名
        GET /heima
    删除索引库: 
        DELETE /索引库名
    修改索引库: ES禁止修改索引库原有字段(原有字段可能会带有倒排索引),可以添加新的字段
        PUT /索引库名/_mapping
        {
            "properties" :{
                "新字段名" : {
                    type
                    index
                }
            }
        }
    添加文档:
        POST /索引库名/_doc/文档ID
            POST /heima/_doc/2
            {
              "info": "黑马程序员",
              "email": "1256012967@qq.com",
              "name": {
                "firstName": "maoshun",
                "lastName": "leng"
              }
            }
    
    查询文档:
        GET /索引库名/_doc/文档ID
    删除文档:
        DELETE /索引库名/_doc/文档ID
    修改文档:
        方式一:全量修改文档, PUT /索引名/_doc/文档ID,先删除旧文档,再新增文档。如果旧文档不存在,直接新增
        方式二:增量修改-局部修改文档字段,POST /索引名/_update/文档ID,
            POST /heima/_update/2
            {
              "doc": {
                "email":"lengmaoshun@esunny.cc"
              }
            }
批量导入

数据查询基本语法:
    GET /索引名称/_search
    {
        "query":{
            "查询类型":{
                "查询字段":"条件值"
            }
        }
    }
    查询类型有:
        match_all:查询所有数据,查询条件为空
        full text:全文检索查询,利用分词器对用户输入内容分词,然后去倒排索引库中匹配。查询类型有:
            match:只能对一个字段进行查询
            multi_match:可以对多个字段进行查询,只要有一个字段包含查询值,文档就能被查到。查询查询的字段越多,查询性能越差。可以把多个字段合并到一个字段做查询
        精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期等类型字段,不会对搜索条件分词,精确查询。查询类型有:
            ids
            range:根据值范围查询
            term:根据词条精确值查询
        布尔查询是一个或多个查询子句的组合,子查询的组合方式有:
            must:必须匹配每个子查询,类似 与
            should:选择性匹配子查询,类似 或
            must_node:必须不匹配,不参与算分,类似 非。不参与算分,查询速度快
            filter:必须匹配,不参与算分,过滤出
            
            查询:城市是上海,品种是皇冠假日、华美达,价格大于500,评分大于45的酒店
            GET /hotel/_search
            {
              "query":
              {
               "bool":{
                 "must":[{"term":{"city":"上海"}}],
                 "should":[{"term":{"brand":"皇冠假日"}},{"term":{"brand":"华美达"}}],
                 "must_not":[{ "range":{"price":{ "lte":500 } }}],
                 "filter":[{ "range":{"score":{ "gte":45 } }} 
                }
              }
            }
        分页查询:ES最多只能查询10000条数据
            GET /hotel/_search
            {
                "query" {
                    "查询类型":{
                        "查询字段":"查询值"
                    }
                }
                "from": 0, //分页开始的下标,默认是0
                "size": 10, //每页显示的个数
                "sort":[
                    {"price","asc"}
                ]
            }
        高亮查询:把搜索中的关键字给高亮突出显示出来,不能用match_all。默认搜索字段与高亮字段必须一致才能高亮
            GET /heima/_search
            {
              "query":
              {
               "match": {
                 "info": "黑马"
               }
              },
              "highlight": {
                "fields": {
                  "info": {
                    "pre_tags": "<em>",
                    "post_tags": "</em>"
                  },
                  // 搜索字段与高亮字段不一致也能高亮设置
                  "name.firstName": {
                    "require_field_match": "false"
                  }
                }
              }
            }
        聚合可以实现对文档数据的统计、分析、运算。聚合常见的有三类
            桶(bucket)聚合:对文档分组
            度量(metric)聚合:最大值、最小值、平均值
            管道(pipeline)聚合:对其它聚合的结果再聚合

        分词器分词执行三步骤:
            character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
            tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik smarttokenizer 
            filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

        同义词分词器:
            PUT /testsyno
            {
              "settings": {
                "analysis": {
                  "analyzer": {
                    "ik_syno_search_analyzer":{  // ik_syno_search_analyzer为自定义分词器名
                      "tokenizer":"ik_max_word",
                      "filter":[
                        "lowercase", //内置filter
                        "ik_syno_filer" //自定义filter
                      ]
                    }
                  },
                  "filter": {
                    "ik_syno_filer":{
                      "type":"synonym_graph",
                      "updateable":true, //开启热加载同义词,当配置文件发生变化时,需要执行POST /testsyno/_reload_search_analyzers加载最新同义词
                      "synonyms_path":"analysis/synonyms.txt"
                    }
                  }
                }
              },
              "mappings": {
                "properties": {
                  "content":{
                    "type": "text",
                    "analyzer": "ik_max_word", //添加文档创建倒排索引时使用到的分词器
                    "search_analyzer": "ik_syno_search_analyzer" // 关键词搜索使用的分词器
                  }
                }
              }
            }

            POST /testsyno/_reload_search_analyzers

            POST /testsyno/_analyze 
            {
              "analyzer": "ik_syno_search_analyzer",
              "text": "HELLO,china"
            }

            POST /testsyno/_doc/1 
            {
              "content":"hello,我的小宝贝"
            }

            POST /testsyno/_doc/2
            {
              "content":"我爱你,中国"
            }

            GET /testsyno/_search 
            {
              "query": {
                "match": {
                  "content": "china"
                }
              }
            }

        
        自动补全分词器: 查询出以用户输入内容开头的词条
            安装拼音分词器:
            自定义分词器:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值