1、ES逻辑结构
索引-index:相当于db中的数据库名。索引命名规则:小写字母。
类型-type:相当于数据库中的表名,为具有相同字段的文档定义的一个类型。
字段-field:相当于表字段名,文档数据的属性命名
映射-mapping:可以设置字段的数据类型、默认值、分析器、是否被索引等规则,是对文档的约束。常见的mapping属性包括:
type:字段数据类型,常见的简单类型有:
字符串:text(可分词的文本,与analyzer搭配使用)、keyword(精确值,不可分词,例如:国家名称、ip地址)
数值:long、integer、short、byte、double、float
布尔:boolean
日期:date
对象:object,嵌套子对象
index:是否创建索引,默认为true。当设置为false时,该字段不参与搜索
analyzer:分词器类型,ik_smart 粗粒度分词 ik_max_word 细粒度分词
properties:嵌套对象的字段定义
文档-document:相当于表中的一行数据,存在于index/type下面。文档以JSON格式存储,能够被索引
2、拓展ik分词器的词库,只需要修改ik分词器目录中的config/IKAnalyzer.cfg.xml文件:
去掉无效分词、新增词典设置、
ik_smart 粗粒度分词 ik_max_word 细粒度分词
3、DSL语法
创建索引库: PUT /索引库名
PUT /heima
{
"mappings": {
"properties": {
"info":{
"type": "text",
"index": true,
"analyzer": "ik_max_word" //创建分词,建立倒排索引(词根 -> 文档编号)
"search_analyzer": "pinyin" //搜索分词器,例如按照拼音分词做搜索
},
"email":{
"type": "keyword",
"index": false
},
"name":{
"type": "object",
"properties": {
"firstName":{
"type":"keyword"
},
"lastName":{
"type":"keyword"
}
}
}
}
}
}
查询索引库: GET /索引库名
GET /heima
删除索引库:
DELETE /索引库名
修改索引库: ES禁止修改索引库原有字段(原有字段可能会带有倒排索引),可以添加新的字段
PUT /索引库名/_mapping
{
"properties" :{
"新字段名" : {
type
index
}
}
}
添加文档:
POST /索引库名/_doc/文档ID
POST /heima/_doc/2
{
"info": "黑马程序员",
"email": "1256012967@qq.com",
"name": {
"firstName": "maoshun",
"lastName": "leng"
}
}
查询文档:
GET /索引库名/_doc/文档ID
删除文档:
DELETE /索引库名/_doc/文档ID
修改文档:
方式一:全量修改文档, PUT /索引名/_doc/文档ID,先删除旧文档,再新增文档。如果旧文档不存在,直接新增
方式二:增量修改-局部修改文档字段,POST /索引名/_update/文档ID,
POST /heima/_update/2
{
"doc": {
"email":"lengmaoshun@esunny.cc"
}
}
批量导入
数据查询基本语法:
GET /索引名称/_search
{
"query":{
"查询类型":{
"查询字段":"条件值"
}
}
}
查询类型有:
match_all:查询所有数据,查询条件为空
full text:全文检索查询,利用分词器对用户输入内容分词,然后去倒排索引库中匹配。查询类型有:
match:只能对一个字段进行查询
multi_match:可以对多个字段进行查询,只要有一个字段包含查询值,文档就能被查到。查询查询的字段越多,查询性能越差。可以把多个字段合并到一个字段做查询
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期等类型字段,不会对搜索条件分词,精确查询。查询类型有:
ids
range:根据值范围查询
term:根据词条精确值查询
布尔查询是一个或多个查询子句的组合,子查询的组合方式有:
must:必须匹配每个子查询,类似 与
should:选择性匹配子查询,类似 或
must_node:必须不匹配,不参与算分,类似 非。不参与算分,查询速度快
filter:必须匹配,不参与算分,过滤出
查询:城市是上海,品种是皇冠假日、华美达,价格大于500,评分大于45的酒店
GET /hotel/_search
{
"query":
{
"bool":{
"must":[{"term":{"city":"上海"}}],
"should":[{"term":{"brand":"皇冠假日"}},{"term":{"brand":"华美达"}}],
"must_not":[{ "range":{"price":{ "lte":500 } }}],
"filter":[{ "range":{"score":{ "gte":45 } }}
}
}
}
分页查询:ES最多只能查询10000条数据
GET /hotel/_search
{
"query" {
"查询类型":{
"查询字段":"查询值"
}
}
"from": 0, //分页开始的下标,默认是0
"size": 10, //每页显示的个数
"sort":[
{"price","asc"}
]
}
高亮查询:把搜索中的关键字给高亮突出显示出来,不能用match_all。默认搜索字段与高亮字段必须一致才能高亮
GET /heima/_search
{
"query":
{
"match": {
"info": "黑马"
}
},
"highlight": {
"fields": {
"info": {
"pre_tags": "<em>",
"post_tags": "</em>"
},
// 搜索字段与高亮字段不一致也能高亮设置
"name.firstName": {
"require_field_match": "false"
}
}
}
}
聚合可以实现对文档数据的统计、分析、运算。聚合常见的有三类
桶(bucket)聚合:对文档分组
度量(metric)聚合:最大值、最小值、平均值
管道(pipeline)聚合:对其它聚合的结果再聚合
分词器分词执行三步骤:
character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik smarttokenizer
filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
同义词分词器:
PUT /testsyno
{
"settings": {
"analysis": {
"analyzer": {
"ik_syno_search_analyzer":{ // ik_syno_search_analyzer为自定义分词器名
"tokenizer":"ik_max_word",
"filter":[
"lowercase", //内置filter
"ik_syno_filer" //自定义filter
]
}
},
"filter": {
"ik_syno_filer":{
"type":"synonym_graph",
"updateable":true, //开启热加载同义词,当配置文件发生变化时,需要执行POST /testsyno/_reload_search_analyzers加载最新同义词
"synonyms_path":"analysis/synonyms.txt"
}
}
}
},
"mappings": {
"properties": {
"content":{
"type": "text",
"analyzer": "ik_max_word", //添加文档创建倒排索引时使用到的分词器
"search_analyzer": "ik_syno_search_analyzer" // 关键词搜索使用的分词器
}
}
}
}
POST /testsyno/_reload_search_analyzers
POST /testsyno/_analyze
{
"analyzer": "ik_syno_search_analyzer",
"text": "HELLO,china"
}
POST /testsyno/_doc/1
{
"content":"hello,我的小宝贝"
}
POST /testsyno/_doc/2
{
"content":"我爱你,中国"
}
GET /testsyno/_search
{
"query": {
"match": {
"content": "china"
}
}
}
自动补全分词器: 查询出以用户输入内容开头的词条
安装拼音分词器:
自定义分词器: