大数据培训
主要作为老男孩教育大数据内容分析栏目
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
lmseo5hy
这个作者很懒,什么都没留下…
展开
-
怎么学习hadoop?
随着计算机网络基础设施的完善,社交网络和电商的发展以及物连网的推进,产生了越来越多的大数据,使得人工智能最近几年也有了长足的发展,大数据的存储和处理也越来越重要,国家对此也比较重视,学习大数据和人工智能的人也越来越多,Hadoop是目前世界上最流行的分布式数据处理框架,是大数据学习必学的框架知识。初学Hadoop,最基础的也就是HDFS和Mapreduce了,HDFS是一个分布式存储文件系统,Ma...原创 2018-03-07 15:23:51 · 1337 阅读 · 0 评论 -
怎么快速学好大数据开发?
新如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题,已成为热门大数据领域热门问题,以下是对新手如何学习大数据技术问题的解答!大数据开发学习可以按照以下内容进行学习:第一阶段:JavaSE+MySql+Linux学习内容:Java 语言入门 → OOP 编程 → Java 常用Api、集合 → IO/NIO → Java 实用技术 → Mysq...原创 2018-03-05 15:10:10 · 4909 阅读 · 1 评论 -
具备哪些条件学习大数据开发更容易?
1. 数学知识数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。2. 分析工具对于初级数据分析师,玩转Excel是必须的,数...原创 2018-03-05 15:11:05 · 2162 阅读 · 0 评论 -
hadoop主要学什么?hadoop学习总结
Hadoop是在分布式服务器集群上存储海量数据并运行分布式分析应用的一个平台,其核心部件是HDFS与MapReduce。HDFS是一个分布式文件系统,可对数据系统进行分布式储存读取;MapReduce是一个计算框架,通过对计算任务的拆分,再根据任务调度器,对任务进行分布式计算。Hadoop是大数据开发必不可少的框架技术,因此,想要学好大数据,必须要掌握Hadoop相关知识,那么,hadoop主要学...原创 2018-03-13 15:13:40 · 1071 阅读 · 0 评论 -
常用的大数据技术有哪些?
大数据技术为决策提供依据,在政府、企业、科研项目等决策中扮演着重要的角色,在社会治理和企业管理中起到了不容忽视的作用,很多国家,如中国、美国以及欧盟等都已将大数据列入国家发展战略,微软、谷歌、百度以及亚马逊等大型企业也将大数据技术列为未来发展的关键筹码,可见,大数据技术在当今乃至未来的重要性!大数据技术,简而言之,就是提取大数据价值的技术,是根据特定目标,经过数据收集与存储、数据筛选、算法分析与预...原创 2018-03-13 16:45:12 · 39157 阅读 · 0 评论 -
HDFS分布式文件系统具有哪些优点?
随着互联网数据规模的不断增大,对文件存储系统提出了更高的要求,需要更大的容量、更好的性能以及更高安全性的文件存储系统,与传统分布式文件系统一样,HDFS分布式文件系统也是通过计算机网络与节点相连,但也有优于传统分布式文件系统的优点。1. 支持超大文件HDFS分布式文件系统具有很大的数据集,可以存储TB或PB级别的超大数据文件,能够提供比较高的数据传输带宽与数据访问吞吐量,相应的,HDFS开放了一些...原创 2018-03-23 14:15:40 · 10866 阅读 · 0 评论 -
如何处理海量数据?
处理海量数据是大数据工程师必备技能,通过对PB级别的数据进行挖掘与分析发掘出有价值的信息,为企业或政府做出正确决策提供依据,是十分必要的一项工作,以下是常用的海量数据处理方法!1. Bloom filterBloomfilter是一种二进制向量数据结构,具有很好的空间效率和时间效率,可用来检测一个元素是否属于一个集合。该方法的优点是它的插入和查询时间都是常数,并且它查询元素却不保存元素本身,因此,...原创 2018-03-23 14:16:31 · 415 阅读 · 0 评论 -
大数据需要哪些技术?
大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。想要学好大数据需掌握以下技术:1. Java编程技术Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以...原创 2018-04-08 16:33:08 · 1565 阅读 · 0 评论 -
数据分析需要的技能
大数据时代已经来临,对复杂凌乱的数据进行整合分析,获取有用的信息,去支撑政策的制定、决策的形成以及工作的完成,必将成为未来决策重要的手段!从事大数据工作的职位可称之为大数据工程师,“大数据工程师”往往不是一个人,而是一个团队,它意味着从数据的收集、整理展现、分析和商业洞察、以至于市场转化的全过程。这个团队中可能包括数据工程师、分析师、产品专员、市场专员和商业决策者等角色,共同完成从原始数据到商业价...原创 2018-04-10 15:35:24 · 627 阅读 · 0 评论 -
Hadoop 50070端口打不开怎么办?
Hadoop50070是hdfs的web管理页面,在搭建Hadoop集群环境时,有些大数据开发技术人员会遇到Hadoop 50070端口打不开的情况,引起该问题的原因很多,想要解决这个问题需要从以下方面进行排查!1. 排查Namenode是否部署成功排查Namenode是否部署成功可以采用命令/etc/init.d/hadoop-0.20-namenodestatus或jps两种方式之一查看,如N...原创 2018-04-10 15:37:31 · 17377 阅读 · 0 评论 -
spark可以用来做什么?零基础学spark
Spark是大数据技术中数据计算处理的王者,能够一次处理PB级的数据,分布在数千个协作的物理或虚拟服务器集群中,它有一套广泛的开发者库和API,并且支持Java,Python,R和Scala等语言,其灵活的特性,适合各种环境,以下是Spark最常见的两种应用场景:离线场景:可以以时间为维度,几年的数据集,或者以业务为维度,某个领域的大数据集等,这种数据我们一般叫做离线数据,或者冷数据。实时场景:网...原创 2018-04-10 15:39:02 · 4103 阅读 · 2 评论 -
大数据开发都需要什么技术?
大数据是对海量数据存储、计算、统计、分析等一系列处理手段,处理的数据量是TB级,甚至是PB或EB级的数据,是传统数据处理手段无法完成的,大数据涉及分布式计算、高并发处理、高可用处理、集群、实时性计算等等,汇集的是IT最热门、最流行的IT技术,大数据是机器学习、深度学习、AI等尖端可以领域的基础架构。大数据技术为决策提供依据,在政府、企业、科研项目等决策中扮演着重要的角色,在社会治理和企业管理中起到...原创 2018-04-03 15:39:00 · 6419 阅读 · 0 评论 -
Spark使用场景有哪些?大数据spark教程
Spark 是一种与 Hadoop 相似的开源集群计算环境,是专为大规模数据处理而设计的快速通用的计算引擎,现已形成一个高速发展应用广泛的生态系统,主要应用场景如下:1. Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小;2. 由于RDD的特性,Spark不适用那种异...原创 2018-04-03 15:40:17 · 2076 阅读 · 2 评论 -
大数据架构师是做什么的?
架构师按照专注领域不同,可分为企业架构师、基础结构架构师、特定技术架构和解决方案架构师等,专职架构师往往偏向基础结构架构师和特定技术架构师,专职架构师不负责具体的业务系统,而又对所有的系统负责,很少直接负责项目,但对项目要有提前把控,面对的是更大的团队和更大的问题域。想要成为专职架构师,就要明确专职架构师的职责,以下是专职架构师常见职责:职责一:全局的技术规划全局技术规划是专职架构师必须要做的工作...原创 2018-04-03 15:41:11 · 20663 阅读 · 1 评论 -
大数据常用的开发工具
大数据研究的出现,为企业、研究机构、政府决策提供了新的行之有效思路和手段,想要做好大数据的管理和分析,一些大数据开发工具的使用是必不可少的,以下是大数据开发过程中常用的工具:1. Apache HiveHive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似...原创 2018-04-11 16:33:09 · 986 阅读 · 0 评论 -
常用的数据分析方法
数据分析是从数据中提取有价值信息的过程,过程中需要对数据进行各种处理和归类,只有掌握了正确的数据分类方法和数据处理模式,才能起到事半功倍的效果,以下是数据分析员必备的9种数据分析思维模式:1. 分类分类是一种基本的数据分析方式,数据根据其特点,可将数据对象划分为不同的部分和类型,再进一步分析,能够进一步挖掘事物的本质。2. 回归回归是一种运用广泛的统计分析方法,可以通过规定因变量和自变量来确定变量...原创 2018-04-11 16:34:59 · 2853 阅读 · 0 评论 -
如何进行HBase性能优化?
来源:http://bbs.oldboyedu.com/article-213-1.htmlHBase是Hadoop生态系统中的一个组件,是一个分布式、面向列的开源数据库,可以支持数百万列、超过10亿行的数据存储,因此,对HBase性能提出了一定的要求,那么如何进行HBase性能优化呢?HBase的拥有完整的支撑系统,包括底层硬件以及把硬件和操作系统、JVM、HDFS连接起来的网络之间的所有部件,...转载 2018-04-20 17:23:09 · 423 阅读 · 0 评论 -
常用的HBase shell 命令有哪些?
HBaseShell 提供了大多数的 HBase 命令,通过 HBase Shell 用户可以方便地创建、删除及修改表, 还可以向表中添加数据、列出表中的相关信息等,以下是相关用法:1. 创建表create ‘表名称’,’列名称1’,’列名称2’,’列名称N’2. 添加记录put ‘表名’,’行名’,’列名’,’值’3. 查看记录get ‘表名’,’行名’4. 查看表中的记录总数count ‘表名...原创 2018-04-20 17:35:29 · 332 阅读 · 0 评论 -
大数据就业岗位有哪些?
我们正处于一个大数据飞速发展的时代,我们所做的一切事,不论是在互联网中或者是互联网之外,都会留下数字的痕迹。大数据技术应用也越来越广泛,对于大数据人才的需求也越来越大。如果你学的是大数据,那么恭喜你,你的发展良机来了。你将有可能成为大数据工程师,走向人生巅峰。目前国内大数据工程师工作领域大致可分为四类:1、数据开发工程师:负责数据接入、数据清洗、底层重构,业务主题建模等工作;大数据整体的计算平台开...原创 2018-05-03 15:17:51 · 3975 阅读 · 0 评论 -
大数据开发需要数学好吗?
大数据开发是和数据相关的工作,很多人有疑问,想从事大数据相关工作,是不是对数学有很高的要求,那么,做大数据真的需要数学很好吗?大数据可以分为很多岗位,不同的岗位对数学的要求不同,只有少部分的大数据岗位对数学的要求高,而大多数大数据岗位,对数学的要求并不高!从老男孩教育大数据培训课程中就可以看出:阶段一:Java基础部分阶段二:Linux阶段三:Hadoop阶段四:Hive阶段五:Avro与Prot...原创 2018-04-25 17:03:22 · 7224 阅读 · 1 评论 -
什么是大数据?
大数据不仅仅是一个数据,它是大数据集的集合,不能使用传统的计算技术来处理,宏观上来讲,它不仅包括需处理的数据,还包括各种工具、技术和框架。大数据涉及由不同设备和应用程序产生的数据,主要包括以下几个领域:黑匣子数据 :它是直升机,飞机和喷气机等的组件。它捕捉飞行机组的声音,麦克风和耳机的录音,以及飞机的性能信息。社会媒体数据 :Facebook和Twitter等社交媒体保存着全球数百万人发布的信息和...原创 2018-05-11 15:38:16 · 248 阅读 · 0 评论 -
Hadoop框架包括哪几部分?
Hadoop是一个用Java编写的Apache开源框架,允许使用简单的编程模型跨计算机集群分布式处理大型数据集。Hadoop框架工作的应用程序在跨计算机集群提供分布式存储和计算的环境中工作。Hadoop旨在从单个服务器扩展到数千个机器,每个都提供本地计算和存储。Hadoop框架包括以下四个模块:HadoopCommon: 这些是其他Hadoop模块所需的Java库和实用程序。这些库提供文件系统和操...原创 2018-05-11 15:40:18 · 5592 阅读 · 0 评论 -
Hadoop如何工作?
Hadoop主要是分布式计算和存储的框架,其工作过程主要依赖于HDFS分布式存储系统和Mapreduce分布式计算框架,以下是其工作过程:阶段 1用户/应用程序可以通过指定以下项目来向Hadoop(hadoop作业客户端)提交作业以获取所需的进程:分布式文件系统中输入和输出文件的位置。java类以jar文件的形式包含map和reduce函数的实现。通过设置作业的不同参数来配置作业。阶段 2Hado...原创 2018-05-11 15:41:14 · 314 阅读 · 0 评论 -
10款大数据处理编程语言
在巨大的数据集中进行筛选的最好工具是什么?以下是总结的十大合适大数据处理的编程语言。1.R语言R语言是数据科学的宠儿,R语言有着简单而明显的吸引力,使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字,它被比喻为是Excel的一个极度活跃版本。2.Python如果说R语言是一个神经质又可爱的高手,那么Python是它随和又灵活的表...原创 2018-05-08 16:00:58 · 1997 阅读 · 0 评论 -
Kafka的存储机制
kafka通过topic来分主题存放数据,主题内有分区,分区可以有多个副本,分区的内部还细分为若干个segment。所谓的分区其实就是在kafka对应存储目录下创建的文件夹,文件夹的名字是主题名加上分区编号,编号从0开始。一、segment所谓的segment其实就是在分区对应的文件夹下产生的文件。一个分区会被划分成大小相等的若干segment,这样一方面保证了分区的数据被划分到多个文件中保证不会...原创 2018-05-08 16:01:56 · 856 阅读 · 1 评论 -
Kafka的可靠性保证
一、AR在Kafka中维护了一个AR列表,包括所有的分区的副本。AR又分为ISR和OSR。AR = ISR + OSR。AR、ISR、OSR、LEO、HW这些信息都被保存在Zookeeper中。1.ISRISR中的副本都要同步leader中的数据,只有都同步完成了数据才认为是成功提交了,成功提交之后才能供外界访问。在这个同步的过程中,数据即使已经写入也不能被外界访问,这个过程是通过LEO-HW机制...原创 2018-05-08 16:03:31 · 1482 阅读 · 0 评论 -
HDFS的设计特点
HDFS,Hadoop分布式文件系统,它是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,适合那些有着超大数据集的应用程序。HDFS的设计特点是:1.大数据文件,非常适合上T级别的大文件或者一堆大数据文件的存储,如果文件只有几个G甚至更小就没啥意思了。2.文件分块存储,HDFS会将一个完整的大文件平均分块存储到不同计算器上,它的意义在于读取文件时可以同时从多个主机取...原创 2018-05-16 15:54:18 · 1730 阅读 · 0 评论 -
Hadoop由哪几部分组成?
Hadoop是一个能够对大量数据进行分布式处理的软件框架,以一种可靠、高效、可伸缩的方式进行数据处理,其有许多元素构成,以下是其组成元素:1.Hadoop Common:Hadoop体系最底层的一个模块,为Hadoop各子项目提供各种工具,如:配置文件和日志操作等。2.HDFS:分布式文件系统,提供高吞吐量的应用程序数据访问,对外部客户机而言,HDFS 就像一个传统的分级文件系统。可以创建、删除、...原创 2018-05-16 15:55:18 · 10257 阅读 · 1 评论 -
大数据处理流程
随着互联网的发展,大数据也在逐渐彰显出自己的优势特点,那么关于大数据的处理流程,你是否了解?今天老男孩讲师带你来看看大数据的处理流程。第一,数据采集定义:利用多种轻型数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。特点和挑战:并发系数高。使用的产品:MySQL,Oracle,HBase,Redis和 MongoDB等,并且这些产品的特点各不相同。第二,统计分析定...原创 2018-06-11 16:33:24 · 3920 阅读 · 0 评论 -
大数据开发学习之Hive的静态分区
分区是hive存放数据的一种方式。将列值作为目录来存放数据,就是一个分区。这样查询时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。Hive分区分为静态分区和动态分区两种,以下是Hive的静态分区。静态分区:若分区的值是确定的,那么称为静态分区。新增分区或者是加载分区数据时,已经指定分区名。create table if not exist...原创 2018-06-15 14:22:24 · 306 阅读 · 0 评论 -
大数据开发学习之Hive的动态分区
分区是hive存放数据的一种方式。将列值作为目录来存放数据,就是一个分区。这样查询时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。Hive分区分为静态分区和动态分区两种,以下是Hive的静态分区。动态分区:分区的值是非确定的,由输入数据来确定。动态分区的相关属性:hive.exec.dynamic.partition=true :是否允许...原创 2018-06-15 14:30:43 · 218 阅读 · 0 评论 -
大数据学习之Hbase shell的基本操作
HBase的命令行工具,最简单的接口,适合HBase管理使用,可以使用shell命令来查询HBase中数据的详细情况。安装完HBase之后,启动hadoop集群(利用hdfs存储),启动zookeeper,使用start-hbase.sh命令开启hbase服务,最后在shell中执行hbaseshell就可以进入命令行界面Habse shell的help对语法的介绍很全,hbase shell 的...原创 2018-06-15 14:34:00 · 301 阅读 · 0 评论 -
大数据挖掘的意义是什么?
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。数据挖掘不能告诉你这些问题的答案,他只能告诉你,A和B可能存在相关关系,但是它无法告诉你A和B...原创 2018-07-04 16:01:03 · 13269 阅读 · 0 评论 -
深度学习是什么?
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。深度学习是实现机器学习的一种方式或一条路径。其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。比如其按特定的物理距离连接;而...原创 2018-07-04 16:02:15 · 938 阅读 · 0 评论 -
有python基础学大数据还需不需要学java?
Python既是一种面向对象的编程语言又因为其简单、易学、开源、脚本语言范儿的“人设”,是一种既适合数据科学又适合大数技术从业者学习的语言。如果你想学一门语言,可以从语言的适用性、学习的难易程度、企业主的要求几个方面考虑,从这几个角度看,学习Python都没有什么可挑剔的:从语言的适用性看,Python有个外号叫“胶水语言”,就是说Python可以随意地组合它和其它程序,它可以作为一个中间...原创 2018-07-17 16:40:09 · 462 阅读 · 0 评论 -
大数据培训就业岗位有哪些?
首席数据官(CDO)首席数据官的工作内容非常多,职责也很复杂,他们负责公司的数据框架搭建、数据管理、数据安全保证、商务智能管理、数据洞察和高级分析。因此,首席数据师必须个人能力出众,同时还需要具备足够的领导力和远见,找准公司发展目标,协调应变管理过程。营销分析师/客户关系管理分析师使用相关策略来支持公司的发展计划。尤其是市场部门能够运用这些数据进行更有针对性的营销。营销分析师能够发挥他...原创 2018-07-17 16:42:04 · 407 阅读 · 0 评论 -
学习大数据可以从事哪些岗位?
这个时代是大数据时代,也是大数据人才稀缺的时代。由于中国人才缺口比较大,大数据也迅速成为行业和市场的热点,更多的企业无论是对人才的招聘还是在培训都成了刚需,这也促使大数据人才的薪资在同岗位中是最高的,掌握大数据技术,工资提升40%左右是很常见的。”大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理,以提供更好的用户体验,以及优化库存,降低成...原创 2018-07-17 16:43:08 · 1896 阅读 · 0 评论 -
大数据开发薪资水平怎么样?
大数据时代来临,如此火爆的职业,吸引了大批有志青年的加入,再加入之前,你对大数据都了解吗?他的行业前景如何?薪资水平如何?1. 大数据行业分析作为中国官方重点扶持的战略性新兴产业,大数据产业已逐步从概念走向落地“大数据”和“虚拟化”两大热门领域得到了广泛关注和重视,90%企业都在实用大数据。财政大数据包括:公安大数据、质检大数据、食品安全大数据、卫生大数据、共商大数据、民政大数据;...原创 2018-07-18 15:31:12 · 1665 阅读 · 0 评论 -
大数据技术大致包含哪些内容
关于大数据的概念,指的是无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。而大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。那么关于大数据的技术大致包含哪些内容?一、数据采集ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。二...原创 2018-07-19 17:11:37 · 10011 阅读 · 1 评论 -
大数据开发学习之Hive的静态分区与动态分区
分区是hive存放数据的一种方式。将列值作为目录来存放数据,就是一个分区。这样查询时使用分区列进行过滤,只需根据列值直接扫描对应目录下的数据,不扫描其他不关心的分区,快速定位,提高查询效率。分动态和静态分区两种:1. 静态分区:若分区的值是确定的,那么称为静态分区。新增分区或者是加载分区数据时,已经指定分区名。create table if not exists day_part1(...原创 2018-07-20 14:00:39 · 593 阅读 · 0 评论