后缀数组2

我在前面一篇文章中已经概要地讲了后缀数组的基本理论依据,下面结合一个 ACM/ICPC 竞赛题目来说说后缀数组的简单应用。我们先来实现后缀数组 O(nlogn) 的构造算法。我曾经在老的博客上写过一个比较丑陋的后缀数组构造算法,我在产生写这两篇文章的想法时,有去网上搜了一下,看了别人的一些实现和一些以前留下的论文,现对之前的算法进行优化,使其变得比较美观一些 :-)

我的构造算法用了O(4n)的空间复杂度,这个和Udi Manber & Gene Myers的论文中提到的O(
2n)的空间复杂度还是有差距的,但是考虑如果按照他们的算法写出来,那么代码必然更长更臭(我之前那个算法就是受了他们思想的很大影响才造就了其丑陋程度),所以还是牺牲一点空间吧。此外,我还看到过几个空间为 O(2n) 而且比一般O(nlogn) 快的算法,但是代码和思想都非常复杂,不利于掌握。

定义一种类型:
typedef unsigned char uchar;

后缀数组构造算法:

void CreateSuffixArray(uchar* szText,
		int L, int** _S, int** _R, int** _T1, int** _T2)
{
	int i, h, h2, *T, *S1, *S2, *R, *B;

	S1 = *_S;       // h阶后缀数组
	S2 = *_T1;      // 2h阶后缀数组
	R = *_R;        // h阶Rank数组
	B = *_T2;       // 某个桶空余空间尾部的索引,兼任2h阶Rank数组

	// 花O(n)的时间对h = 1进行计数排序
	for(i = 0; i < 256; i++)
		B = 0;
	for(i = 0; i < L; i++)
		B[szText]++;
	for(i = 1; i < 256; i++)
		B += B[i - 1];
	for(i = 0; i < L; i++)
		S1[--B[szText]] = i;

	// 计算Rank(1),因为仅仅是1阶的Rank,所有有并列的
	for(R[S1[0]] = 0, i = 1; i < L; i++)
	{
		if(szText[S1] == szText[S1[i - 1]])
			R[S1] = R[S1[i - 1]];
		else
			R[S1] = R[S1[i - 1]] + 1;
	}

	// log(n)趟O(n)的倍增排序
	// SA(h) => Rank(h) => SA(2h) => Rank(2h) => …

	for(h = 1; h < L && R[S1[L - 1]] < L - 1; h <<= 1)
	{
		// 计算Rank(h)相同的后缀形成的h桶尾部的索引
		// 即有多少个后缀的h前缀相同,它们被放在一个桶中
		for(i = 0; i < L; i++)
			B[R[S1]] = i;

		// 求SA(2h)
		// 在同一个h桶中,所有的后缀的h前缀肯定相同,
		// 那么比较他们的2h前缀,只要比较其2h前缀后半的
		// 长度为h的串即可,而这个串恰恰是后面某个后缀的
		// h前缀,所以我们逆向遍历有序的SA(h),
		// 将S1 – h号前缀放到它所在桶的最后一个空位置,
		// 同时,桶尾前进一个位置,这样即形成了2h桶排序
		for(i = L – 1; i >= 0; i–)
			if(h <= S1)
				S2[B[R[S1 - h]]–] = S1 – h;

		// 对于长度不超过h的最后几个后缀,由于在h阶段
		// 它们每个实际上都已经独立分桶了(长度为h的也是)
		// 而且他们的桶中有且仅有一个元素,
		// 所以只要直接复制他们h阶段的SA值就可以了
		// 同时,由于采用滚动数组,所以S2中“残留”了
		// h/2个有效的数据,所以最终我们只需复制h/2个数据
		for(i = L – h, h2 = L – (h >> 1); i < h2; i++)
			S2[B[R]] = i;

		T = S1; S1 = S2; S2 = T;

		// 计算Rank(2h)
		// 2h阶段是否要分桶只需看相邻两个2h前缀前后两半
		// h前缀是否全部h阶相等
		for(B[S1[0]] = 0, i = 1; i < L; i++)
		{
			// 这里不用考虑S1 + h会越界
			// 如果i达到了S1 + h越界的数值,
			// 那么前面一个条件显然不会满足了
			// 因为此时i前缀肯定已经独立分桶了
			if(R[S1] != R[S1[i - 1]] ||
				R[S1 + h] != R[S1[i - 1] + h])
			{
				B[S1] = B[S1[i - 1]] + 1;
			}
			else
				B[S1] = B[S1[i - 1]];
		}

		T = B; B = R; R = T;
	}

	if(*_S != S1)
		*_S = S1, *_T1 = S2;
	if(*_R != R)
		*_R = R, *_T2 = B;
}

介绍一个重要概念:LCPLCP是Longest Common Prefix的缩写,即最长公共前缀,表示某个串从第一个字符开始对应位置字符相同的连续的位置数。比如,后缀abcda和后缀abcca的LCP就是3。我们将后缀数组中连续的两个后缀Ai-1和Ai的LCP称为Ai的Height,即Height(i) = LCP(j , j – 1),并规定ASA[0]的Height为0。那么很显然,后缀数组某个区间的两个区间边界元素所表示的后缀的LCP就是区间内所有元素所代表的后缀的Height的最小值。我们要求这个LCP,就相当于一个RMQ(Range Minimum Query)问题,当Height已知的时候,只要常数时间就可以求出RMQ,即所求的LCP。所以,关键是如何降低求Height数组的复杂度。不过人们发现Height数组有一个令人兴奋的性质。令 h(x) = Height(Rank(x)),即x号前缀的Height值,那么,

当 x > 0 且 Rank(x) > 0 时, h(i) ≥ h(i – 1) – 1

这个在这里就不证明了,反正证明过程相当巧妙 :-) 利用这个性质,有了下面的这个线性的求Height的算法:

void CalculateHeight(uchar* szText,
		int L, int* S, int* R, int* H, int* T)
{
	int i, j, k;

	for(k = 0, i = 0; i < L; i++)
	{
		if(R == 0)
			H = 0;
		else
		{
			for(j = S[R - 1]; szText[i + k] == szText[j + k]; k++);

			H[R] = k;

			if(k > 0)
				k–;
		}
	}
}

初一看,这个不是 O(n2) 的吗?其实根据上面说的性质,可以证明,它是线性的,证明也略了

下面是一个具体的ACM/ICPC竞赛题目的解法,原题你可以在这里找到:http://acm.pku.edu.cn/JudgeOnline/problem?id=2774

char C[200002];
int  D[4][200001];

int main()
{
	int i, l1, l2, b;
	int *S, *R, *H, *T;

	gets(C);
	l1 = (int)strlen(C);
	C[l1] = '$';
	gets((char*)C + l1 + 1);
	l2 = l1 + 1 + (int)strlen(C + l1 + 1);

	S = D[0]; R = D[1];
	H = D[2]; T = D[3];

	CreateSuffixArray((uchar*)C, l2, &S, &R, &H, &T);
	CalculateHeight((uchar*)C, l2, S, R, H, T);

	// 求两个串的最长公共子串,只要让两个串s1、s2
	// 连接在一起形成一个新串,求出新串的SA、Rank和Height
	// 很显然,最长公共子串肯定出现在后缀数组某相邻两项之中
	// 根据Height的定义,扫描一遍Height数组,找相邻两个分别开始于
	// s1和s2串某个位置的后缀,求出所有满足这个条件的最大Height即可

	for(b = 0, i = 1; i < l2; i++)
	{
		if(S < l1 && S[i - 1] > l1 ||
			S > l1 && S[i - 1] < l1)
		{
			if(H > b)
				b = H;
		}
	}

	printf(“%d/n”, b);

	return 0;
}

后缀数组的用处很大,除了上面的求两个串的最长公共字串之串之外,多模式匹配、最长回文串、全文检索等等都它的拿手好戏,可以说后缀数组是后缀树良好的替代品。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值