cv工作中,整个工程搭建:
数据加载、网络模型的建立,然后就是把加载的数据放到模型中train 或者test。其实大流程就是这三步,以下记录各大步中的常见的函数及其含义:
数据加载中:
1 loader = data.Data(args)
基本就是先记载好数据(训练的或测试的),就是放到一个容器里面。然后,真正开始训练,就从这个容器里面拿数据train
t = Trainer(args, loader, model, loss, checkpoint) 这个Trainer里面源码就会有分别train和test的过程,这里面一般就能详细看到batchsize啥的
2模型建立:
这就是你自己设计的地方了,train的时候就会调用mode,把数据fed进去/
model = ArbRCAN(args).to(device) to(device)就是放到gpu还是cpu。一般默认着,这个model的状态是训练。
把数据放到model,一般就是sr = self.model(lr)直接放。
3test的时候和train的不同:
在于test,是用已经保存好的预训权重,所以整个过程,权重什么的都不要更新了。所以
self.model.eval() eval()就实现这个功能
测试的时候,会有这个代码:就是为了,让运算更快的:with torch.no_grad():
另外,这个matlab linux安装方法如下:
参考【首发】 ubuntu20.04安装matlab2021b/matlab2020b
按照流程走下来即可,注意的是,它的下载文件里面有crack文件,这个文件夹里面放的是 后面配置激活matlab要用的文件,它的csdn文章没讲这个 也就算里面的.so文件和
license.lic文件,注意路径就好。那个下载完matlab后,文件夹里面会自带那个.so文件。但是你要替换成 博主给的,不然会报错 启动matlab